首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.  相似文献   

2.
Sucrose and trehalose are conventional cryoprotectant additives for oocytes and embryos. Ethanol can artificially enhance activation of inseminated mature oocytes. This study aims to investigate whether artificial oocyte activation (AOA) with ethanol can promote the development competence of in vitro matured oocytes. A total of 810 human immature oocytes, obtained from 325 patients undergoing normal stimulated oocyte retrieval cycles, were in vitro maturated (IVM) either immediately after collection (Fresh group n = 291)) or after being vitrified as immature oocytes (Vitrified group n = 519). These groups were arbitrarily assigned. All fresh and vitrified oocytes which matured after a period of IVM then underwent intra-cytoplasmic sperm injection (ICSI). Half an hour following ICSI, they were either activated by 7% ethanol (AOA group) or left untreated (Non-AOA group). Fertilization, cleavage rate, blastocyst quality and aneuploidy rate were then evaluated. High-quality blastocysts were only obtained in both the fresh and vitrified groups which had undergone AOA after ICSI. Trehalose vitrification slightly, but not significantly, increased the formation rates of high-quality embryos (21.7% VS 15.4%, P > 0.05) and blastocysts (15.7% VS 7.69%, P > 0.05)) when compared with sucrose vitrification. Aneuploidy was observed in 12 of 24 (50%) of the AOA derived high quality blastocysts. High-quality blastocysts only developed from fresh or vitrified immature oocytes if the ICSI was followed by AOA. This information may be important for human immature oocytes commonly retrieved in normal stimulation cycles and may be particularly important for certain patient groups, such as cancer patients. AOA with an appropriate concentration of ethanol can enhance the developmental competence of embryos.  相似文献   

3.
Calcineurin is required for oocyte exit from meiotic block in metaphase II (MII) stage in invertebrates and also in lower vertebrates. However, the role of calcineurin in mammalian oocyte activation is still unclear. The aim of this study was to determine whether calcineurin is involved in the processes regulating porcine oocyte activation. Indirect immunofluorescence demonstrated localization of both calcineurin subunits, CnA and CnB, especially in the cortex area of MII oocytes, in vitro fertilized and also parthenogenetically activated oocytes. After activation, the fluorescence intensity of the protein in the cortex area of oocytes remains unchanged; the protein calcineurin in the cytoplasm was recorded mainly around the pronuclei. Treatment of matured oocytes with calcineurin inhibitors, cyclosporin A (CsA) and hymenistatin I (HS-I), followed by activation with calcium ionophore A23187, significantly decreased the rate of activated oocytes compared to oocytes that were treated only with calcium ionophore (Ca-Io), (CsA+Ca-Io 25.0% v. Ca-Io 83.3%; HS-I+Ca-Io 32.5% v. Ca-Io 85.0%). Compared to the control, CsA treatment of matured oocytes followed by activation with Ca-Io did not affect the activity level of metaphase-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) in activated oocytes evaluated by kinase activity assay. Simultaneous staining of calcineurin and cortical granule content in matured oocytes showed that calcineurin distributed in the cortical area of the oocyte has not been colocalized with cortical granules content. On the other hand, the calcineurin inhibition before parthenogenetic activation leads to a reduction of the cortical reaction level compared to oocytes that were not treated with CsA (complete exocytosis: CsA+Ca-Io 2.6% v. Ca-Io 83.9%; sum of cortical granule brightness: CsA + Ca-Io 0.69 v. Ca-Io 0.15). Our results showed that calcineurin is involved in the process of pig oocyte activation and cortical granule exocytosis; however this regulation seems to be MPF and MAPK independent.  相似文献   

4.
We detected fully mature undescribed oocytes in Drosophila melanogaster ovaries. The fully mature oocytes were rehydrate in ovaries. In the oocyte of stage 14, chromosomes make globular mass, while the chromosome shows meiotic metaphase I in fully mature oocytes. Both mature oocytes and stage 14 oocytes were activated by hypotonic treatment. When the mature oocytes or the stage 14 oocytes were activated, telophase II figures were observed in former oocytes but meiosis in latter oocyte stopped at late metaphase I, suggesting the stage 14 activated oocyte cannot pass the second checkpoint of meiosis.  相似文献   

5.
Summary The effects of cycloheximide (CH) on grey crescent formation in artificially maturedAmbystoma mexicanum oocytes were determined. CH induced grey crescent formation after a few hours, especially after a 45° to 90° rotation from the vertical animal-vegetal axis. With low concentrations of CH (about 0.5 ng/oocyte), meiosis was still able to proceed normally to the stable second metaphase stage, but higher concentrations blocked it after 1st polar body extrusion and an interphasic nucleus appeared. Such effects were compared to those of inactone, an analogue of cycloheximide, which as a pure substance does not inhibit protein synthesis, but still contained a small amount of CH in the available samples. It is concluded that grey crescent formation can occur in non-activated oocytes. The effects of cycloheximide might be due to partial inhibition of protein synthesis and the presence of a proteinic inhibitor of the symmetry reaction in the normal oocyte is suggested.  相似文献   

6.
Intracellular pH has recently been shown to increase during parthenogenetic activation of the porcine oocyte. In the following set of experiments, intracellular pH was monitored during activation and pronuclear development was assessed following activation treatments with calcium, in the absence of calcium, and in oocytes loaded with the calcium chelator BAPTA-AM in calcium-free medium. Intracellular pH increase was not different among groups when treating with 7% ethanol or 50 microM calcium ionophore, or during treatment with thimerosal for 12 or 25 min. Activation with thimerosal (200 microM, 12 min) followed by 8 mM dithiothreitol (DTT, 30 min) resulted in a decreased pronuclear development in calcium-free medium with or without BAPTA-AM loaded oocytes as compared to controls. Activation with 50 microM calcium ionophore resulted in pronuclear development that was different between the calcium-free and BAPTA-AM loaded oocytes in calcium-free medium. Similar incidences of pronuclear formation were observed in all ethanol treatment groups. It was concluded that external calcium as well as large changes in intracellular free calcium are not necessary for the increase in intracellular pH, but normal intracellular calcium signaling is critical for normal levels of pronuclear development. Finally, oocytes were measured for intracellular pH changes for 30 min following subzonal sperm injection. Intracellular pH did not increase, although pronuclear formation was observed 6 hr post SUZI. This suggested that major differences were still present between sperm-induced and parthenogenetic activation of the porcine oocyte.  相似文献   

7.
8.
By indirect immunofluorescence, using rabbit anti-heparin-binding placental protein (HBPP) antiserum, we studied HBPP expression by physiologically and non-physiologically (microsurgically) activated hamster gametes. Whereas mature gametes (sperm, metaphase II oocytes) were negative, in vivo conceived preimplantation embryos, from pronuclear to two- and four-cell stages, were HBPP positive. No HBPP was demonstrated in the zona pellucida, but HBPP-dependent immunofluorescence was localized in the perivitelline space. Oocytes incubated with hyaluronidase demonstrated variable responses from negative to positive. (Diluent or sperm) microinjected oocytes were all activated and HBPP positive within 4 h after stimulation. Thus neither activation by microinjection nor HBPP expression required paternal gametes. These kinetics suggest that HBPP may be a cortical granule secretogogue which can be applied to monitor oocyte responses during in vitro manipulations.  相似文献   

9.
Combination of in vitro maturation (IVM) and cryopreservation offers new opportunities for women with contraindication in ovarian stimulation, and females who desire to postpone the childbearing due to different problems. There are still controversies regarding IVM procedure and its impact on oocytes fertilization capability. This systematic review and meta-analysis were conducted to evaluate the impact of vitrification on human oocyte maturation rate during IVM procedure. In this review, we searched Medline, Embase, Scopus and ISI web of science to identify English-language studies. The last search was implemented on 3 February 2018. The original articles which assessed maturation rate after vitrification of MI or GV oocytes were included. Animal trials and the studies that performed cryopreservation using slow-freeze method were excluded. Bias and quality assessments were performed. 2476 articles were screened primarily. After duplication removing and the application of inclusion and exclusion criteria, 14 studies included for the analysis. All studies compared maturation rate between the oocytes that were vitrified at the GV or MI stage before maturation and oocytes which were matured in vitro without vitrification. Meta-analysis showed that oocyte vitrification at GV stage had a significant negative impact on maturation rate (RR = 0.76, 95% CI: 0.66–0.88); I2 = 85.2%; P = 0.000). Finally, based on our results, oocyte vitrification decreases the maturation rate by 24%.  相似文献   

10.
11.
Activation of oocytes, arrested at the meiosis II (MII) in mammals, initiates meiotic release, mitotic divisions, and development. Unlike most somatic cell types, MII arrested female germ cells lack an efficient DNA integrity checkpoint control. Here we present evidence showing a unique checkpoint for DNA integrity at first mitosis after oocyte activation. Mouse oocytes carrying intact DNA cleaved normally after meiotic release, whereas 50% of oocytes harboring damaged DNA manifested cytofragmentation, a morphological hallmark of apoptosis. If not activated, DNA-damaged MII oocytes did not show apoptotic fragmentation. Further, activated, enucleated oocytes or enucleated fertilized oocytes also underwent cytofragmentation, implicating cytoplasmic coordination of the fragmentation process, independent of the nucleus. Depolymerization of either actin filaments or microtubules induced no cytofragmentation, but inhibited fragmentation upon oocyte activation. During the process of fragmentation, microtubule networks formed, then microtubule asters congregated at discrete locations, around which fragmented cellular bodies formed. Mitotic spindles, however, were not formed inactivated oocytes with damaged or absent DNA; in contrast, normal mitotic spindles were formed in activated oocytes with intact DNA. These results demonstrate that damaged DNA or absence of DNA leads to cytofragmentation after oocyte activation. Further, we found a mechanism of cytoskeletal involvement in the process of cytofragmentation. In addition, possible implication of the present findings in somatic cell cloning and human clinical embryology is discussed.  相似文献   

12.
13.
In vitro fertilization (IVF) is being routinely used in humans and several domestic species, however, limited success has been achieved in the horse. Although immature equine oocytes are capable of completing meiosis in vitro, subsequent fertilization, and embryonic development of those oocytes are questionable. The lack of development of these oocytes could be attributed to an impaired cytoplasmic maturation. In the horse, the study of oocyte cytoplasmic maturation and post-fertilization development has been hindered by the lack of progress in IVF. In mammalian oocytes, migration of cortical granules (CG) has been used as an important criterion to evaluate cytoplasmic maturation. The aim of this study was to describe and quantify the CG distribution of equine oocytes during in vitro meiotic maturation and to assess activation of oocytes with calcium ionophore based upon fluorescein isothiocyanate (FITC)-labeled Lens culinaris agglutinin (LCA) and laser confocal microscopy. The results of this study indicate that CG are distributed throughout the cytoplasm of oocytes at the germinal vesicle (GV) stage (immature). As maturation proceeds, a progressive centripetal migration of CG to the oocyte cortex occurs with the formation of a monolayer adjacent to the plasma membrane starting by the end of a 30 hr incubation period and increasing significantly after 36 hr. After activation, significant reduction in the number of CG was observed (P < 0.001) suggesting that oocytes cultured under the present conditions possess the ability to release CG in response to the elevation of intracellular free calcium.  相似文献   

14.
The ability of bovine oocytes to undergo parthenogenetic activation using either a Ca++-Mg++-H+ ionophore (A23187) or electric shock was investigated, as a prelude to understanding activation potential following nuclear transfer into ooplasm. Oocytes were collected from slaughterhouse ovaries by aspiration of 1–5-mm follicles. The time of placement into maturation medium was noted, and maturational age (time in culture) measured from that point. After exposure to activating conditions eggs were cultured for a further 12–16 hours, fixed, and stained with aceto-orcein. Oocytes that progressed to telophase or pronuclear formation were considered activated. Concentrations of A23187 ranging from 100 pM to 100 μM showed that 1–100 μM levels resulted in 94–100% activation at 30 hours maturation. Frequency of activation differed from controls (no ionophore) at 100 nM (49%; P < 0.05). With A23187 maximum response occurred between 26 and 30 hours of maturation (77% and 92%, respectively). A short pulse electric shock, capable of causing oocyte membrane fusion, gave similar results relative to maturational age (82% and 90% activation for 26 and 30 hours, respectively). Therefore, maximum response to the two activating stimuli occurred in oocytes at similar maturational ages. Exposure to activating conditions prior to onset of activating ability (18 hours) followed by another exposure at 26 hours showed that the oocytes were still fully able to activate upon reaching maturational activation competence. Because cytochalasin B is present in the medium used for nuclear transfer, oocytes were incubated with cytochalasin B prior to exposure to an activating stimulus. Frequency of activation was similar to the control treatment (61% and 73%). The effect of mechanical stress of cytoplasm removal and replacement by electrofusion on activation was also not significant. Overall, maturational age of the oocyte was the main determinant of activation ability.  相似文献   

15.
A detailed chronology of the cytological events related to maturation that take place within the reproduction molt cycle has been established. It has been shown that oocytes, initially arrested at prophase I, resume meiosis when approaching stage D1? of the molt cycle, ie, 4–5 days before molting. The following steps characterize this premolt period of oocyte maturation: nuclear envelope folding, nucleolar dissociation, condensation of the chromosomes, and beginning of the breakdown of the nuclear envelope (GVBD). At the ultrastructural level, it has been confirmed that GVBD actually takes place at the D1??D2 stage transition, when the germinal vesicle still occupies a central position in the oocyte. The migration of the chromosome takes only a few hours and begins approximately 4 hr before molting. It is only 1–2 hr before molting that the divalent chromosomes that are not yet organized in a metaphase plate become visible at the surface of the oocyte. They lay in a nucleoplasmic area no longer limited by the nuclear envelope. Metaphase I is reached a few minutes after molting. A second meiotic block appears at this stage, which persists until spawning, ie, for about 24 hr. Fertilization occurs at the moment of spawning. In vitro fertilization experiments demonstrated that fertilization normally triggers the release of the second meiotic block. Extrusion of the two polar bodies can be easily observed using a method for clearing and staining the oocytes in toto.  相似文献   

16.
The early receptor current (ERC) represents molecular charge movement during rhodopsin conformational dynamics. To determine whether this time-resolved assay can probe various aspects of structure-function relationships in rhodopsin, we first measured properties of expressed normal human rhodopsin with ERC recordings. These studies were conducted in single fused giant cells containing on the order of a picogram of regenerated pigment. The action spectrum of the ERC of normal human opsin regenerated with 11-cis-retinal was fit by the human rhodopsin absorbance spectrum. Successive flashes extinguished ERC signals consistent with bleaching of a rhodopsin photopigment with a normal range of photosensitivity. ERC signals followed the univariance principle since millisecond-order relaxation kinetics were independent of the wavelength of the flash stimulus. After signal extinction, dark adaptation without added 11-cis-retinal resulted in spontaneous pigment regeneration from an intracellular store of chromophore remaining from earlier loading. After the ERC was extinguished, 350-nm flashes overlapping metarhodopsin-II absorption promoted immediate recovery of ERC charge motions identified by subsequent 500-nm flashes. Small inverted R(2) signals were seen in response to some 350-nm flashes. These results indicate that the ERC can be photoregenerated from the metarhodopsin-II state. Regeneration with 9-cis-retinal permits recording of ERC signals consistent with flash activation of isorhodopsin. We initiated structure-function studies by measuring ERC signals in cells expressing the D83N and E134Q mutant human rhodopsin pigments. D83N ERCs were simplified in comparison with normal rhodopsin, while E134Q ERCs had only the early phase of charge motion. This study demonstrates that properties of normal rhodopsin can be accurately measured with the ERC assay and that a structure-function investigation of rapid activation processes in analogue and mutant visual pigments is feasible in a live unicellular environment.  相似文献   

17.
Platelet-activating factor (PAF) is synthesized and secreted by macrophages in response to inflammatory stimuli. When exogenously applied to human monocyte derived macrophages (HMDMs), PAF induces a rapid rise in cytosolic free calcium (Ca i ) believed to be an early triggering event in macrophage activation. We investigated PAF-induced Ca2+ signaling in HMDMs using the calcium indicator Fura-2, combining single cell ratio fluorimetry and digital video imaging with whole-cell recording techniques. Application of PAF (20 ng/ml) to adherent macrophages induced transient increases in Ca, that were biphasic, consisting of an initial phase that could be observed in Ca2+-free solutions and a second phase that was critically dependent upon Ca2+ entry. When Mn2+ was applied to cells in the presence and absence of Ca2+, PAF increased the rate of Mn2+ entry rate only when Ca2+ was absent. PAF increased the rate of Ba2+ entry even when measured in the presence of external Ca2+. Ca2+ entry was reversibly inhibited in the presence of external La3+ (1 mm). Data obtained from simultaneous voltage-clamp/microfluorimetry experiments demonstrated the activation of a nonselective cation current which closely paralleled the rising phase of the Ca i transient. We investigated whether the non-selective cation conductance provided for the bulk of the agonist-induced Ca2+ influx. Changes in Ca i following removal of extracellular Ca2+ (Ca o ) during the agonist-induced Ca i response were not associated with changes in whole-cell current. The inability to detect whole-cell current changes correlated with a decrease in Ca o suggests that the bulk of the Ca2+ influx was not through the nonselective conductance and either does not occur through a conductance pathway or occurs via a parallel pathway consisting of channels which are both low conductance and highly Ca2+ selective.  相似文献   

18.
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening.  相似文献   

19.
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening.  相似文献   

20.
This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes from preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号