首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periacrosomal plasma membrane of spermatozoa is involved in sperm binding to oviductal epithelial cells and to the zona pellucida. A protein of 68–70 kD molecular mass was purified biochemically from the isolated periacrosomal plasma membrane of equine spermatozoa as a possible receptor for adhesion of spermatozoa to oviductal epithelial cells. A polyclonal antibody raised in rabbits against the purified equine sperm membrane protein recognized the 70 kD and an antigenically related 32 kD protein in preparations of isolated periacrosomal sperm plasma membrane and in detergent extracted ejaculated and epididymal spermatozoa. A larger protein (∼110 kD) was detected in equine testis. Two antigenically related proteins (64 and 45 kD) were recognized on the plasma membrane of cynomolgus macaque spermatozoa. In vitro sperm-binding assays were performed in the presence of antigen-binding fragments or IgG purified from the polyclonal antiserum to investigate a possible function of the isolated protein in binding of equine spermatozoa to homologous oviductal epithelial cells or zona pellucida. Incubation with antigen-binding fragments or IgG purified from the antiserum did not inhibit binding of equine spermatozoa either to oviductal epithelial cells or to the zona pellucida. On ultrastructural examination, the antibody bound exclusively to the cytoplasmic side of the periacrosomal plasma membrane of equine and macaque spermatozoa. Microsequence analysis of 13 residues of sequence showed strong homology with a number of angiotensin converting enzymes: An 84% identity was identified with testis specific and somatic forms of human and mouse angiotensin-converting enzyme. Immunocytochemistry and immunoblot analysis established that the protein is specific for the periacrosomal membrane of ejaculated, epididymal, and testicular stallion spermatozoa. Mol. Reprod. Dev. 48:251–260, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
李明文  张福祥 《动物学报》1995,41(4):420-424
应用焦锑酸钾原位定位法对大熊猫精子获能和顶体反应过程中进行钙定位研究,发现未获能精子的 Ca2+主要结合于顶体前区和赤道段质膜外侧和顶体内膜内侧(核膜侧);随着获能的进行,Ca2+进入精子内部并主要结合于顶体区质膜内侧和顶体外膜外侧;顶体反应的精子,Ca2+结合于顶体内膜外侧、顶体后区质膜外侧和分散存在于释放的顶体内容物中,有些顶体反应精子的顶体内膜外侧结合的Ca2+特别丰富。精子尾部的Ca2+主要分布于中段线粒体内,且其内所含Ca2+含量随着获能和顶体反应而增加。另外尾部致密纤维和轴丝处也有少量Ca2+分布。  相似文献   

3.
The cellular distribution, membrane orientation, and biochemical properties of the two major NaOH-insoluble (integral) plasma membrane proteins of Euglena are detailed. We present evidence which suggests that these two polypeptides (Mr 68 and 39 kD) are dimer and monomer of the same protein: (a) Antibodies directed against either the 68- or the 39-kD polypeptide bind to both 68- and 39-kD bands in Western blots. (b) Trypsin digests of the 68- and 39-kD polypeptides yield similar peptide fragments. (c) The 68- and 39-kD polypeptides interconvert during successive electrophoresis runs in the presence of SDS and beta- mercaptoethanol. (d) The 39-kD band is the only major integral membrane protein evident after isoelectric focusing in acrylamide gels. The apparent shift from 68 to 39 kD in focusing gels has been duplicated in denaturing SDS gels by adding ampholyte solutions directly to the protein samples. The membrane orientation of the 39-kD protein and its 68-kD dimer has been assessed by radioiodination in situ using intact cells or purified plasma membranes. Putative monomers and dimers are labeled only when the cytoplasmic side of the membrane is exposed. These results together with trypsin digestion data suggest that the 39- kD protein and its dimer have an asymmetric membrane orientation with a substantial cytoplasmic domain but with no detectable extracellular region. Immunolabeling of sectioned cells indicates that the plasma membrane is the only cellular membrane with significant amounts of 39- kD protein. No major 68- or 39-kD polypeptide bands are evident in SDS acrylamide gels or immunoblots of electrophoresed whole flagella or preparations enriched in flagellar membrane vesicles, nor is there a detectable shift in any flagellar polypeptide in the presence of ampholyte solutions. These findings are considered with respect to the well-known internal crystalline organization of the euglenoid plasma membrane and to the potential for these proteins to serve as anchors for membrane skeletal proteins.  相似文献   

4.
A high performance liquid chromatographic procedure has been used for the purification of rat Sertoli cell secretory protein S70 and S45-S35 heterodimeric protein to determine their role during spermatogenesis. These two proteins display binding affinity for each other and appear antigenically related. We have observed that: 1. S70 and S45-S35 heterodimeric protein coelute during purification, 2. polyclonal antiserum raised against protein S70 recognizes common antigenic determinants in polypeptides S45 and S35, the disulfide-linked components of the heterodimeric protein, and 3. a monoclonal antibody that recognizes polypeptide S35 but does not crossreact with either protein S70 or polypeptide S45, immunoprecipitates the S70/S45-S35 heterodimeric protein complex. In immunofluorescent experiments, antisera raised against protein S70 and polypeptide components of S45-S35 heterodimeric protein immunoreact with two major sperm intracellular structures: the acrosome and periaxonemal outer dense fibers of sperm tail. Immunoreactivity was not detected on the sperm plasma membrane surface of unfixed, living sperm. Outer dense fibers extracted from sperm tails by a combined treatment with cetylthrimethylammonium bromide and 2-mercaptoethanol, yielded a characteristic polypeptide pattern. In immunoblotting experiments sperm tail polypeptides were recognized by polyclonal antisera raised against Sertoli cell secretory proteins. We conclude that Sertoli cell secretory proteins S70 and S45-S35 heterodimeric protein are antigenically related to each other and to keratin-like polypeptides from sperm tail.  相似文献   

5.
Annexins are a family of Ca2+-binding proteins involved in the exocytotic process. The presence and the role of annexins in mammalian spermatozoa have not been well established. Two annexin-like proteins were obtained from guinea pig testis, a doublet of Mr 31–33 kD (p31/33) and a protein of Mr 50 kD (p50). Both proteins were able to bind to erythrocyte ghosts in a Ca2+-dependent fashion. Polyclonal antibodies against p31/33 reacted with two major proteins, Mrs 50 kD (sp50) and 42 kD (sp42), from mature and immature guinea pig spermatozoa. p50 and sp50 are likely the native proteins from testis and spermatozoa, respectively, and they are seemingly related. By immunofluorescence, sp50 was only found in the apical acrosome region of immature and capacitated and noncapacitated spermatozoa, and its location was intracellular. In spermatozoa undergoing acrosome reaction, sp50 was detected in the whole acrosome, while in spermatozoa that had undergone acrosome reaction sp50 was not detected. However, in the protein pattern of acrosome reaction vesicles, anti-p31/33 antibody revealed diffuse bands of Mr 35–38 kD. sp50 was able to bind to plasma membrane fragments and acrosome outer membrane from demembranated sperm in a Ca2+-dependent fashion. The presence of sp50 in the acrosome region, its distribution throughout the acrosome membrane just before the acrosome reaction, and its ability to bind both plasma and outer acrosome membranes in a Ca2+-dependent manner suggest that sp50 may participate in the acrosome reaction mechanism in guinea pig spermatozoa. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Sperm-egg plasma membrane fusion during fertilization was studied using guinea pig gametes and mAbs to sperm surface antigens. The mAb, PH-30, strongly inhibited sperm-egg fusion in a concentration-dependent fashion. When zona-free eggs were inseminated with acrosome-reacted sperm preincubated in saturating (140 micrograms/ml) PH-30 mAb, the percent of eggs showing fusion was reduced 75%. The average number of sperm fused per egg was also reduced by 75%. In contrast a control mAb, PH-1, preincubated with sperm at 400 micrograms/ml, caused no inhibition. The PH-30 and PH-1 mAbs apparently recognize the same antigen but bind to two different determinants. Both mAbs immunoprecipitated the same two 125I-labeled polypeptides with Mr 60,000 (60 kD) and Mr 44,000 (44 kD). Boiling a detergent extract of sperm severely reduced the binding of PH-30 but had essentially no effect on the binding of PH-1, indicating that the two mAbs recognize different epitopes. Immunoelectron microscopy revealed that PH-30 mAb binding was restricted to the sperm posterior head surface and was absent from the equatorial region. The PH-30 and PH-1 mAbs did not bind to sperm from the testis, the caput, or the corpus epididymis. PH-30 mAb binding was first detectable on sperm from the proximal cauda epididymis, i.e., sperm at the developmental stage where fertilization competence appears. After purification by mAb affinity chromatography, the PH-30 protein retained antigenic activity, binding both the PH-30 and PH-1 mAbs. The purified protein showed two polypeptide bands of 60 and 44 kD on reducing SDS PAGE. The two polypeptides migrated further (to approximately 49 kD and approximately 33 kD) on nonreducing SDS PAGE, showing that they do not contain interchain disulfide bonds, but probably have intrachain disulfides. 44 kD appears not to be a proteolytic fragment of 60 kD because V8 protease digestion patterns did not reveal related peptide patterns from the 44- and 60-kD bands. In the absence of detergent, the purified protein precipitates, suggesting that either 60 or 44 kD could be an integral membrane polypeptide.  相似文献   

7.
We have used the homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) to identify proteins that are adjacent to nascent polypeptides undergoing translocations across mammalian rough ER. Translocation intermediates were assembled by supplementing cell free translations of truncated mRNAs with the signal recognition particle (SRP) and microsomal membrane vesicles. Two prominent cross-linked products of 45 and 64 kD were detected. The 64-kD product was obtained when the cell free translation contained SRP, while formation of the 45-kD product required both SRP and translocation competent microsomal membrane vesicles. In agreement with previous investigators, we suggest that the 64-kD product arises by cross-linking of the nascent polypeptide to the 54-kD subunit of SRP. The 45-kD product resists alkaline extraction from the membrane, so we conclude that the 11-kD nascent polypeptide has been crosslinked to an integral membrane protein of approximately 34 kD (imp34). The cross-linked product does not bind to ConA Sepharose, nor is it sensitive to endoglycosidase H digestion; hence imp34 is not identical to the alpha or beta subunits of the signal sequence receptor (SSR). We propose that imp34 functions in concert with SSR to form a translocation site through which nascent polypeptides pass in traversing the membrane bilayer of the rough endoplasmic reticulum.  相似文献   

8.
The egg jelly-induced acrosome reaction is inhibited by polyclonal antibodies raised against either of two S. purpuratus sperm-membrane proteins, of Mr 80 and 210 kD. Although the two antigens used have dissimilar CNBr peptide maps, antisera produced against each of them cross-react with both proteins. Inhibition of the egg jelly-induced acrosome reaction by the antisera is bypassed by a combination of the ionophores monensin and A23187. This result, along with data showing that the antisera inhibit egg jelly-induced uptake of 45Ca2+, suggests that the antisera may block both Ca2+ uptake and Na+/H+ exchange in the sperm. The acrosome reaction blockage appears to be caused by the same component of the polyclonal sera responsible for cross-reaction; consequently, these antisera cannot be used to determine whether one or both of the crossreacting proteins modulate a critical step in the acrosome reaction.  相似文献   

9.
Control of membrane fusion during spermiogenesis and the acrosome reaction   总被引:5,自引:0,他引:5  
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.  相似文献   

10.
11.
When the plasma membranes of caput and cauda epididymal spermatozoa of hamster were evaluated for their ability to undergo phosphorylation, a differential phosphorylation of the membrane proteins was observed. In the plasma membranes of the caput epididymal spermatozoa (immature), twelve proteins were phosphorylated (100, 76, 67, 65, 55, 52, 47, 42, 38, 32, 30, and 20 kD), whereas in the plasma membranes of cauda epididymal spermatozoa (mature), a differential phosphorylation pattern was observed with respect to the 94, 67, 52, and 47 kD proteins. The 94 kD protein was found to be phosphorylated and the 67 kD protein was found to be not phosphorylated in cauda spermatozoal plasma membrane (Cd SPM) in contrast to this protein in caput spermatozoal plasma membrane (Cpt SPM). The 52 and 47 kD proteins were also more intensely phosphorylated in Cd SPM than Cpt SPM. The 100 kilodalton protein, although present in both Cpt and Cd sperm plasma membranes, was found to be phosphorylated at the tyrosine residues only in the Cd SPM, as indicated by the Western blot using antiphosphotyrosine antibody. Further, a differential phosphorylation of the substrate proteins present in the Cpt and Cd SPM was seen when Mg2+ in the assay buffer was replaced by other divalent cations. For instance, Zn2+ stimulated the phosphorylation of an 85 kD protein in cauda SPM and not in the caput SPM and Ca2+ stimulated the phosphorylation of a 76 kD protein only in the cauda SPM. The phosphoproteins in both the plasma membranes were found to be phosphorylated predominantly at the tyrosine residue. The differential phosphorylation of a 100 kD protein at tyrosine in the Cd SPM (Western blot), which is absent in the immature Cpt SPM, also indicated that certain proteins in the hamster spermatozoa are phosphorylated in a maturation-specific manner. Mol. Reprod. Dev. 47:341–350, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
For sperm to successfully fertilize an oocyte, it needs to pass through certain steps prior to, during and after initial recognition of the zona pellucida (ZP). During capacitation, the surface of the sperm head becomes remodelled, priming it to bind to the ZP and subsequently to undergo the ZP-induced acrosome reaction. During capacitation, sperm ZP-binding proteins are ordered in functional protein complexes that only emerge at the apical tip of the sperm head plasma membrane; this is also functionally the exclusive sperm surface area involved in primary ZP binding. After primary ZP binding, the same area is probably involved in the induction of the acrosome reaction. A combination of biochemical and proteomic membrane protein techniques have enabled us to dissect and highly purify the apical sperm plasma membrane area from control and capacitated sperm cells. The actual ZP-binding proteins identified predominantly belonged to the sperm membrane-associated family members of spermadhesins (AQN-3) and were present in the aggregating lipid ordered membrane microdomains (lipid rafts) that emerged during in vitro capacitation in the apical ridge area of the sperm head plasma membrane. This clustering of these rafts was dependent on the presence of bicarbonate (involved in protein kinase A activation) and on the presence of albumin (involved in cholesterol removal). Remarkably, cholesterol removal was restricted to the non-raft membrane fraction of the sperm plasma membrane, but did not cause any depletion of cholesterol in the raft membrane fraction. Interestingly, sperm SNARE proteins (both VAMP from the outer acrosomal membrane, as well syntaxin from the apical sperm head plasma membrane) shared lateral redistribution properties, along with the ZP-binding protein complex and raft marker proteins. All of these were recovered after capacitation in detergent-resistant membrane preparations from sperm thought to represent membrane lipid rafts. We inferred that the capacitation-dependent formation of an aggregated lipid ordered apical ridge surface area in the sperm head plasma membrane was not only relevant for ZP-binding, but also for the ZP-induced acrosome reaction.  相似文献   

13.
Studies have been carried out to 1) further characterize sperm specific plasma membrane polypeptides (33 and 35 kDa) that are recognized by a monoclonal antibody previously described (Longo, 1989) and 2) follow the incorporation and dispersal of these proteins within plasmalemmae of monospermic and polyspermic sea urchin (Arbacia punctuluta) eggs and oocytes utilizing immunocytochemical methods at the ultrastructural level of observation. Only sperm labeled when incubated with monoclonal antibody to the 33 and 35 kDa proteins followed by colloidal gold-tagged second antibody. Colloidal gold label was observed on the egg plasma membrane immediately after gamete membrane fusion; the amount and extent of label, i.e., the distance from the site of sperm incorporation, increased with time postinsemination. By 20 min postinsemination approximately one hemisphere of the inseminated egg/oocyte was associated with label. The expanding distribution of colloidal gold label on inseminated eggs and oocytes vs. time reflects the free diffusion of 33 and 35 kDa sperm surface proteins among egg/oocyte plasma membrane components. Label was also found in forming endocytotic vesicles, suggesting that sperm plasma membrane proteins may be internalized.  相似文献   

14.
The abundance of data pertaining to the metabolism of lipids in relation to mammalian fertilization has warranted an effort to assemble a molecular membrane model for the comprehensive visualization of the biochemical events involved in sperm capacitation and the acrosome reaction. Derived both from earlier models as well as from current concepts, our membrane model depicts a lipid bilayer assembly of space-filling molecular models of sterols and phospholipids in dynamic equilibrium with peripheral and integral membrane proteins. A novel feature is the possibility of visualizing individual lipid molecules such as phosphatidylcholine, phosphatidylethanolamine, lysophospholipids, fatty acids, and free or esterified cholesterol. The model illustrates enzymatic reactions which are believed to regulate the permeability and integrity of the plasma membrane overlying the acrosome during interactions between the male gamete and capacitation factors present in fluids of the female genital tract. The use of radioactive lipids as molecular probes for monitoring the metabolism of cholesterol and phosphatidylcholine revealed the presence of (1) steroid sulfatase in hamster cumulus cells, (2) lecithin: cholesterol acyltransferase in human follicular fluid, (3) phospholipase A2, and (4) lysophospholipase in human spermatozoa. These enzymatic reactions can be integrated into a pathway that provides a link between the concepts of lysophospholipid accumulation in the sperm membranes and alteration of the cholesterol/phospholipid ratio as factors involved in the preparation of the membranes for the acrosome reaction. Capacitation is viewed as a reversible phenomenon which, upon completion, results in a decrease in negative surface charge, an efflux of membrane cholesterol, and an influx of calcium between the plasma and outer acrosomal membranes. Triggered by the entry of calcium, the acrosome reaction involves phospholipase A2 activation followed by a transient accumulation of unsaturated fatty acids and lysophospholipids implicated in membrane fusion which occurs during the formation of membrane vesicles in spermatozoa undergoing the acrosome reaction.  相似文献   

15.
Hicks GR  Rice MS  Lomax TL 《Planta》1993,189(1):83-90
We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948–4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or mutimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.Abbreviations HPLC high-pressure liquid chromatography - IAA indole-3-acetic acid - azido-IAA 5-N3-7-3H-IAA - pI isoelectric point - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank R. Hopkins and I. Gelford for excellent technical work and our colleagues, especially T. Wolpert and D.L. Rayle, for many helpful discussions. This work was supported by grants to T.L.L. from National Science Foundation (DCB 8904114), National Aeronautics and Space Administration (NAGW 1253) and by a grant to D.L. Rayle and T.L.L. from U.S. Department of Agriculture (90-37261-5779). G.R.H. is supported by a National Aeronautics and Space Administration Predoctoral Fellowship (NGT 50455).  相似文献   

16.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

17.
The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39. Other (62, 51, and 25 kD) quantitatively minor peripheral proteins also interact with IP39 on the nitrocellulose overlays, and the possible significance of this binding is discussed.  相似文献   

18.
《The Journal of cell biology》1988,107(6):2021-2027
Two groups of mAbs reacting with external domains of a major sea urchin sperm membrane glycoprotein of 210 kD were isolated. Previous studies have shown that group I mAbs inhibit the acrosome reaction induced by egg jelly and also cause large increases in intracellular Ca2+ [( Ca2+]i). Group II mAbs, at comparable levels of cell surface binding, neither inhibit the egg jelly-induced acrosome reaction nor cause increases in [Ca2+]i. In this paper, we investigate the ability of these mAbs to induce the cAMP-dependent phosphorylation of sperm histone H1. Group I mAbs induce H1 phosphorylation to the same level and on the same peptide, as occurs upon treatment of sperm with egg jelly. These mAbs also activate adenylate cyclase to the same extent as egg jelly. Group II mAbs do not induce H1 phosphorylation and are only poor activators of adenylate cyclase. Group I mAbs compete with each other, but not with group II mAbs, for binding to the cell surface. These data indicate that the activation of adenylate cyclase is an initial event in the pathway leading from the binding of mAbs to a specific domain of the 210-kD protein at the cell surface, to the discrete phosphorylation of histone H1 in highly condensed sperm chromatin. The domain on the 210-kD protein recognized by group I mAbs plays a critical role in signal transduction during the early events of fertilization.  相似文献   

19.
Summary The types and amount of plasma membrane proteins synthesized during cell elongation in response to auxin (2,4-dichlorophenoxyacetic acid) treatment were investigated. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [35S]methionine for various times, ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. Protein accumulated in the plasma membrane after auxin treatment. Despite this accumulation, the protein incorporation rate, estimated by the amount of label in the plasma membrane following a 0.5 h [35S]methionine pulse, was unaffected by auxin treatment at both 0.5 and 18 h of treatment. Protein apparently accumulated by a mechanism distinct from enhanced incorporation. The plasma membrane proteins synthesized by elongating segments differed from controls at 18 h, as evidenced by the pattern of fluorographs following a 0.5 h radiolabelling. However, auxin treatment did not alter the 2-D gel pattern of the polypeptides detectable by silver stain.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IEF isoelectric focusing - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

20.
《The Journal of cell biology》1988,107(6):2679-2688
Cilia were isolated from Tetrahymena thermophila, extracted with Triton X-114, and the detergent-soluble membrane + matrix proteins separated into Triton X-114 aqueous and detergent phases. The aqueous phase polypeptides include a high molecular mass polypeptide previously identified as a membrane dynein, detergent-soluble alpha and beta tubulins, and numerous polypeptides distinct from those found in axonemes. Integral membrane proteins partition into the detergent phase and include two major polypeptides of 58 and 50 kD, a 49-kD polypeptide, and 5 polypeptides in relatively minor amounts. The major detergent phase polypeptides are PAS-positive and are phosphorylated in vivo. A membrane-associated ATPase, distinct from the dynein-like protein, partitions into the Triton X-114 detergent phase and contains nearly 20% of the total ciliary ATPase activity. The ATPase requires Mg++ or Ca++ and is not inhibited by ouabain or vanadate. This procedure provides a gentle and rapid technique to separate integral membrane proteins from those that may be peripherally associated with the matrix or membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号