首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conduction of cardiac action potentials depends on the flow of excitation through gap junctions, which are hexameric protein associations of connexins (Cxs). The major Cx reported in the heart is Cx43, although some Cx40 and Cx45 are also present. There is some evidence for altered Cx content in heart failure. In heart failure, conduction is depressed and slowed conduction may contribute to arrhythmogenesis and (or) the maintenance of arrhythmia. Cx content and distribution were determined in ventricular tissues from normal and cardiomyopathic Syrian hamsters, an animal model of heart failure which has reproducible age-specific cardiomyopathy resulting in heart failure and age-matched controls in three groups: young (3-5 weeks), adult (13-18 weeks), and old (>45 weeks). Frozen, unfixed sections of ventricular tissues were immunofluorescently stained using antibodies against Cx43, Cx40, and Cx45. Cx43 was the predominant Cx detected in all samples. In normal hamsters, Cx43 was localized predominantly at the intercalated disc region, while in myopathic myocytes, it was scattered. In Western blots, Cx43 content of normal hamster hearts was highest in the adult hearts compared with young and old hamster hearts. In contrast, Cx43 content was significantly lower in adult cardiomyopathic hamster hearts compared with all other groups. The alterations of content and distribution of gap junction Cx43 may contribute to diminished conduction, pump function, and arrhythmogenesis in heart failure.  相似文献   

2.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

3.
We hypothesized that hypertension-related myocardial remodeling characterized by hypertrophy and fibrosis might be accompanied by cell-to-cell gap junction alterations that may account for increased arrhythmogenesis. Intercellular junctions and expression of gap junction protein connexin-43 were analyzed in rat heart tissues from both spontaneous (SHR) and L-NAME model of hypertension. Isolated heart preparation was used to examine susceptibility of the heart to lethal ventricular fibrillation induced by low potassium perfusion. Ultrastructure observation revealed enhanced neoformation of side-to-side type while internalization of end-to-end type (intercalated disc-related) of gap junctions prevailed in the myocardium of rats suffering from either spontaneous or L-NAME-induced hypertension. In parallel, immunolabeling showed increased number of connexin-43 positive gap junctions in lateral cell membrane surfaces, particularly in SHR. Besides, focal loss of immunopositive signal was observed more frequently in hearts of rats treated with L-NAME. There was a significantly higher incidence of hypokalemia-induced ventricular fibrillation in hypertensive compared to normotensive rat hearts. We conclude that adaptation of the heart to hypertension-induced mechanical overload results in maladaptive gap junction remodeling that consequently promotes development of fatal arrhythmias.  相似文献   

4.
The gap junction protein connexin-43 (Cx43) exists mainly in the phosphorylated state in the normal heart, while ischemia induces dephosphorylation. Phosphatase(s) involved in cardiac Cx43 dephosphorylation have not as yet been identified. We examined the acute effects of ischemia on the dephosphorylation of the gap junction protein connexin-43 in isolated adult cardiomyocytes and isolated perfused hearts. In addition we tested the effectiveness of protein phosphatase 1 and 2A (PP1/2A) inhibitors in preventing Cx43 dephosphorylation. In both models, significant accumulation of the 41 kDa non-phosphorylated Cx43, accompanied by decreased relative levels of the 43–46 kDa phosphorylated Cx43, was observed at 30 min of ischemia. Okadaic acid decreased ischemia-induced Cx43 dephosphorylation; it also decreased the accumulation of non-phosphorylated Cx43 at the intercalated discs of myocytes in the whole heart. Calyculin A, but not fostriecin, also decreased ischemia-induced Cx43 dephosphorylation in isolated cardiomyocytes. It is concluded that isolated adult myocytes respond to ischemia in a manner similar to whole hearts and that ischemia-induced dephosphorylation of Cx43 is mediated, at least in part, by PP1-like phosphatase(s).  相似文献   

5.
It is generally accepted that connexin43 (Cx43) is a major constituent of heart and myometrial gap junctions. However, the presence of Cx43 gap junctions in non-pregnant myometrium is still poorly documented. Tissue sections of porcine heart and non-pregnant uterus and myometrial smooth muscle cell cultures were immunostained with monoclonal antibody against Cx43. In the heart, intensive immunostaining was confined to the intercalated discs as previously reported. In the non-pregnant uterus, punctuate immunostaining of Cx43 was seen throughout the myometrium along cell interfaces between myocytes. The expression of Cx43 was sustained in cultured smooth muscle cells isolated from non-pregnant myometrium. Western blotting has detected single isoform of Cx43 in both, cardiac and myometrial tissues. The electrophoretic mobility of porcine heart Cx43 was similar to that of myometrial isoform but different from the pattern of mobility of Cx43 of the rat heart. Hence, porcine myometrium may provide attractive model for studying cellular mechanisms triggering expression of gap junction protein in normal (non-pregnant) uterus.  相似文献   

6.
Extracellular ATP4- opens pores in the plasma membrane of mouse macrophages and the J774 macrophage-like cell line that allow molecules as large as fura-2 (831 daltons) to enter the cytoplasmic matrix of the cells. The functional similarity of the ATP-induced pores to gap junctions led us to examine whether these pores were related to members of the connexin family of gap junction proteins. Under conditions of high stringency, RNA isolated from J774 cells hybridized with cDNA for connexin-43 but not with cDNA for connexin-32, -26, or -46. RNA isolated from several variant J774 cell lines that do not permeabilize in response to extracellular ATP (ATPR cells) did not hybridize with connexin-43 cDNA. Immunoblots demonstrated that J774 cells, but not the variant ATPR B2 cell line, expressed connexin-43 protein. These studies demonstrate that mouse macrophages express the connexin-43 gap junction mRNA and protein and strongly suggest that in these cells connexin-43 forms "half-gap junctions" in response to extracellular ATP4-.  相似文献   

7.
心肌细胞缝隙连接重塑与心律失常   总被引:1,自引:0,他引:1  
Yu ZB  Sheng JJ 《生理学报》2011,63(6):586-592
缝隙连接是相邻心肌细胞间电、化学偶联的通道,亦是心室肌成为功能性合胞体的重要结构.心肌有缝隙连接蛋白(connexin,CX) 40、43与45的表达,心室肌主要表达CX43.CX43形成的缝隙连接大部分呈点状分布于闰盘部位,心肌细胞膜侧面分布极少.心肌缺血-再灌注、肥厚、衰竭、高胆同醇与糖尿病条件下,心肌细胞缝隙连接...  相似文献   

8.
Basic fibroblast growth factor (bFGF) is a ubiquitous and multifunctional polypeptide that is believed to have a role in tissue repair and to act as a morphogen in embryonic development. Here, we have used immunohistochemical and biochemical methods with antibodies directed against the amino-terminal domain of bFGF, designated IS2, which recognize native and denatured bFGF, to demonstrate that in addition to its known intracellular and extracellular localization in heart, bFGF is also associated with cardiomyocyte gap junctions. In tissue sections, IS2 labeled regions of intercalated discs, producing an immunofluorescence pattern virtually indistinguishable from that obtained with antibodies against the heart gap junction protein connexin-43. By electron microscopy, gap junctions but not other regions of plasma membrane were heavily immunolabeled with this antibody. By solid phase immunoassay, bFGF was found to be more concentrated in a fraction enriched in cardiac gap junctions than in whole sarcolemmal preparations. Finally, an 18-kDa protein was recognized by several different antibodies specific for bFGF on Western blots of heart subcellular fractions enriched in gap junctions. We suggest that bFGF-like peptides are either an integral part of, or exist in close association with, cardiac gap junctions and thus may play a role in modulating gap junctional intercellular communication.  相似文献   

9.
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

10.
The density of gap junctions in four Drosophila melanogaster mutants with abnormal wing disc development has been determined using quantitative electron microscopy and compared with the gap junction density in wild-type wing discs. No appreciable differences relative to wild-type controls were found in the cell death mutant vestigial or in the mildly hyperplastic mutant lethal giant disc which could not be accounted for in terms of altered lateral plasma membrane surface density or as an extension of the gap junction growth which normally occurs during the third larval stage of development in wild-type wing discs. However, both the severely hyperplastic mutant l(3)c43hs1 and the neoplastic mutant lethal giant larva have significant reductions in the gap junction surface density, the number of gap junctions, and the gap junction areal fraction of the lateral plasma membrane compared with wild-type controls. These differences cannot be attributed to altered lateral plasma membrane surface densities which are not significantly different from wild-type control wing discs. The reduced gap junction density in severely hyperplastic and neoplastic wing discs suggests that alterations in the number or distribution of gap junctions may be as disruptive to normal growth and development as their complete absence.  相似文献   

11.
Antipeptide antibodies directed to residues 55 to 66 (NTQQPGCENVCY) of connexin43 (cx43) specifically recognize this protein on Western blots of intact and urea-split gap junctions isolated from rat heart. These antibodies detect a single protein of 43 kDa, corresponding to cx43, on Western blots of whole fractions of various vertebrate hearts. Immunogold labeling by electron microscopy shows that the epitopes recognized by these antibodies are not localized on the cytoplasmic surfaces of intact gap junctions but only at the edges of these junctions. In urea-split gap junctions the gold particles are seen in the junctional space, associated with the extracellular faces of junctional membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat heart gap junctions treated with trypsin show that they are constituted with either two polypeptides of Mr 12,000 and 14,000 or a single polypeptide of Mr 22,000 according to whether the analyses are performed under reducing or non-reducing conditions, respectively. The antibodies directed to residues 55 to 66 of cx43 cross-react with both the 12 and 22 kDa polypeptides. These results suggest that the two protected domains of 12 and 14 kDa which contain the first extracellular loop and a putative second extracellular loop, respectively, are linked by disulfide bonds. In adult rat heart sections analyzed by indirect immunofluorescence the intercalated discs are labeled with antibodies directed to a cytoplasmic carboxy-terminal domain of cx43 (El Aoumari et al., J. Membr. Biol. 115, 229-240 (1990)). The same intercalated discs are also labeled in adjacent sections incubated with the antibodies directed to residues 55 to 66. Two hypotheses might explain these results: either the antibodies have access to the extracellular domain of cx43 molecules localized at the edges of the gap junctions, or cx43 molecules are present in the non-junctional membranes of the intercalated discs.  相似文献   

12.
Gap junctions, composed of connexins, provide a pathway of direct intercellular communication for the diffusion of small molecules between cells. Evidence suggests that connexins act as tumor suppressors. We showed previously that expression of connexin-43 and connexin-32 in an indolent prostate cancer cell line, LNCaP, resulted in gap junction formation and growth inhibition. To elucidate the role of connexins in the progression of prostate cancer from a hormone-dependent to -independent state, we introduced connexin-43 and connexin-32 into an invasive, androgen-independent cell line, PC-3. Expression of these proteins in PC-3 cells resulted in intracellular accumulation. Western blot analysis revealed a lack of Triton-insoluble, plaque-assembled connexins. In contrast to LNCaP cells, connexins could not be cell surface-biotinylated and did not reside in the cell surface derived endocytic vesicles, in PC-3 cells, suggesting impaired trafficking to the cell surface. Intracellular accumulation of connexins was observed in several androgen-independent prostate cancer cell lines. Transient expression of alpha-catenin facilitated the trafficking of both connexins to the cell surface and induced gap junction assembly. Our results suggest that impaired trafficking, and not the inability to form gap junctions, is the major cause of communication deficiency in human prostate cancer cell lines.  相似文献   

13.
Myotonic dystrophy (DM) is one of the most prevalent muscular diseases in adults. The molecular basis of this autosomal disorder has been identified as the expansion of a CTG repeat in the 3' untranslated region of a gene encoding a protein kinase (DMPK). The pathophysiology of the disease and the role of DMPK are still obscure. It has been previously demonstrated that DMPK is localized at neuromuscular junctions, myotendinous junctions, and terminal cisternae of the sarcoplasmic reticulum (SR), in the skeletal muscle, and at intercalated discs in the cardiac muscle. We report here new findings about specific localization of DMPK in the heart. Polyclonal antibodies raised against a peptide sequence of the human DMPK were used to analyze the subcellular distribution of the protein in rat papillary muscles. Confocal laser microscopy revealed a strong although discontinuous reactivity at intercalated discs, together with transverse banding on the sarcoplasm. At higher resolution with immunogold electron microscopy, we observed that DMPK is localized at the cytoplasmic surface of junctional and extended junctional sarcoplasmic reticulum, suggesting that DMPK is involved in the regulation of excitation-contraction coupling. Along the intercalated disc, DMPK was found associated with gap junctions, whereas it was absent in the two other kinds of junctional complexes (fasciae adherentes and desmosomes). Immunogold labeling of gap junction purified fractions showed that DMPK co-localized with connexin 43, the major component of this type of intercellular junctions, suggesting that DMPK plays a regulatory role in the transmission of signals between myocytes.  相似文献   

14.
Summary According to the sequence of connexin 43, a cardiac gap junctional protein, the domain contained within residues 314–322 is located 60 amino acids away from the carboxy-terminus. Antibodies raised to a peptide corresponding to this domain label a unique 43-kD protein on immunoblots of both purified gap junctions and whole extracts from rat heart. Immunofluorescence investigations carried out on mammal heart sections reveal a pattern consistent with the known distribution of intercalated discs. Immunogold labeling performed with ultrathin frozen sections of rat heart or partially purified rat heart gap junctions demonstrate that antigenic determinants are associated exclusively with the cytoplasmic surfaces of gap junctions.The antibodies were shown to cross-react with a 43-kD protein on immunoblots of whole extracts from human, mouse and guinea pig heart. However, no labeling was seen when heart of lower vertebrates such as chicken, frog and trout, was investigated. These results, confirmed by immunofluorescence investigations, were interpreted as a loss of antigenic determinants due to sequence polymorphism of cardiac connexin 43.Proteins ofM r 43 and 41 kD, immunologically related to cardiac connexin 43, were detected in immunoblots of mouse and rat brain whole extracts. mRNAs, homologous to those of cardiac connexin 43 and of the same size (3.0 kb), are also present in brain. Immunofluorescence investigations with primary cultures of unpermeabilized and permeabilized mouse neural cells showed that the antigenic determinants recognized by the antibodies specific for connexin 43 are cytoplasmic and that the labeling observed between clustered flat cells, is punctate, as expected for gap junctions. Double labeling experiments demonstrated that the immunoreactivity is associated with GFAP-positive cells, that is to say, astrocytes.  相似文献   

15.
Intercalated discs of mammalian heart: a review of structure and function   总被引:11,自引:1,他引:10  
Intercalated discs are exceptionally complex entities, and possess considerable functional significance in terms of the workings of the myocardium. Examination of different species and heart regions indicates that the original histological term has become out-moded; it is likely, however, that all such complexes will continue to fall under the generic heading of 'intercalated discs'. The membranes of the intercalated discs establish specific associations with a variety of intracellular and extracellular structures, as well as with numerous types of proteins and glycoproteins. Characterization of discs and their components has already brought together a large number of research disciplines, including microscopy, cytochemistry, morphometry, cell isolation and culture, cell fractionation, cryogenics, immunology, biochemistry, and electrophysiology. The continued dissection of substance and function of intercalated discs will depend on such interdisciplinary approaches. The intercalated disc component which continues to attract the greatest amount of interest is the so-called gap junction. All indications thus far point to a great deal of inherent lability in the architecture of the gap junction. There is thus considerable potential for the creation of artefact while preserving and observing gap junctions, and this problem will doubtless continue to hamper the understanding of their functions. A question of special interest concerns whether the gap junctions of intercalated discs are required for transfer of electrical excitation between cells, or maintain cell-to-cell adhesion, or in fact subserve both electrical and structural phenomena. Two schools of thought exist with respect to cell-to-cell coupling in the heart. One proposes that low-resistance junctions in the discs mediate electrical coupling, whereas the other supports the possibility of coupling across ordinary high-resistance membranes. Thus the intercalated discs continue to be a source of controversy, just as they have been since they were originally discovered in heart muscle over a century ago.  相似文献   

16.
A 135-kd membrane protein of intercellular adherens junctions.   总被引:41,自引:2,他引:39       下载免费PDF全文
T Volk  B Geiger 《The EMBO journal》1984,3(10):2249-2260
We report here on a new 135-kd membrane protein which is specifically associated with intercellular adherens-type junctions. This surface component was identified by a monoclonal antibody, ID-7.2.3, raised against detergent-extracted components of membranes of chicken cardiac muscle rich in intercalated discs. The antibodies stain extensively adherens junctions in intact cardiac muscle and in lens, as well as in cultured cells derived from these tissues. In living cultured cells only very little immunolabelling was obtained with ID-7.2.3 antibodies, probably due to the limited accessibility of the antibodies to the intercellular gap. However, upon the removal of extracellular Ca2+ ions a dissociation of the junction occurred, leading to the rapid exposure of the 135-kd protein. Immunoelectron microscopic labelling of EGTA-treated, or detergent-permeabilized cells indicated that the antigen is found along the plasma membrane and highly enriched in contact areas. Double immunolabelling for both the 135-kd protein and vinculin pointed to the close association of the two in intercellular junctions and to the apparent absence of the former protein from the vinculin-rich focal contacts of cultured cells and from dense plaque of smooth muscle. Immunoblotting indicated that the 135-kd protein is present in many tissues but is particularly enriched in heart, lens and brain.  相似文献   

17.
Summary The wing discs of the temperature-sensitiveDrosophila mutantl(3)c43 hs1 become hyperplastic when larvae are reared at the restrictive temperature of 25° C or above (Martin et al. 1977). We have previously shown that reductions in gap junctions are correlated with the hyperplasia (Ryerse and Nagel 1984a). We report here that reductions in gap junction surface density, number and percent of the lateral plasma membrane area precede the onset of tissue hyperplasia as defined by the gross appearance of tissue overgrowth in the wing pouch and an increase in cell number. Gap junction reductions begin soon after temperature upshift and become significantly different from non-shifted controls by 16 h. Direct cell counts indicate that there is no difference in the total number of cells in experimental vs control discs until after 16 h when the 28° C discs begin to grow rapidly with a cell doubling time of about 6 h as compared with about 13 h for the 20°C controls. The finding that gap junction reductions precede the onset of tissue hyperplasia is consistent with the idea that gap junctions play a regulatory role in growth control and pattern formation and strengthens our hypothesis (Ryerse and Nagel 1984b) that a minimum number and a specific distribution of gap junctions are required for normal development.  相似文献   

18.
Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/- mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/- mice was due almost entirely to a reduction in the number of individual gap junctions (226 +/- 52 vs. 150 +/- 32 individual gap junctions/field in Cx43 +/+ and +/- ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.  相似文献   

19.
Gap junctions formed by connexins mediate cell-cell communication by electrical and chemical coupling. Recently, it has been shown that alterations in the phosphorylation state of the connexins result in functional alteration of cell-cell communication through gap junctions. Therefore, we focused on the association of alterations of phosphorylation state of connexin 43 (Cx43) with cardiac function in vivo. Rat hearts were transferred to Langendorff apparatus and submitted to hypoxia and then reoxygenated. In the control heart, Cx43 was phosphorylated and located at the intercalated disk. When the hearts were subjected to hypoxia, Cx43 at gap junctions was dephosphorylated and changed its localization to the entire plasma membrane. The area of cardiomyocytes stained with anti-phosphorylated Cx43 antibody was decreased in a time-dependent manner. Immunoblot data supported the decrease of phosphorylated Cx43 during hypoxia. ZO-1 did not change its localization at the intercalated disk during the hypoxic period. We also found that the area occupied by dephosphorylated Cx43 was correlated with the decrease of percent of rate-pressure product. These data indicate that dephosphorylation and redistribution of Cx43 is an early sign of cardiac injury after hypoxia. Detection of dephosphorylated Cx43 may serve as a diagnostic tool for examining ischemic heart disease.  相似文献   

20.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号