首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The effects of IL-1β and TGF-β on the biosynthesis of extracellular matrix structural components relative to the metalloproteinases and their inhibitor TIMP1 in human articular chondrocytes were investigated. It has been proposed that TGF-β, acting as a positive regulator of matrix accretion, can counteract the increased loss of cartilage matrix induced by IL-1β. To allow a comparison of their effects on mRNA levels for these different components, quantitation by competitive RT/PCR was employed. This method was found to give reproducible estimates of mRNA levels and the observed effects of IL-1β and TGF-β on individual components of this system agree with qualitative data obtained by northern blotting. IL-1β had a more pronounced effect on aggrecan mRNA levels than on those for type II collagen. Similar quantitative differences were observed between collagenase and stromelysin mRNA levels. TGF-β generally counteracted the effects of IL-1β, and new steady state levels were attained within 24 h. However, the reversal of IL-1β induced suppression of matrix protein mRNA levels appeared more effective than its suppression of the increase in stromelysin and collagenase mRNA levels. Similarly TGF-β did not reduce the extent of IL-1β induced secretion of stromelysin at the protein level. TIMP1 mRNA levels were only slightly reduced by IL-1β; however this cytokine effectively surpressed its induction by TGF-β. The higher concentrations of TGF-β and longer exposure times required to overcome the surpressive effects of IL-1β suggest that the interaction between IL-1β and TGF-β in the regulation of TIMP1 expression follows a different mechanism to that operating for the metalloproteinases and matrix proteins. Thus the overall potential of TGF-β to inhibit proteolysis is attenuated by its much slower effect on TIMP1 mRNA levels. © 1996 Wiley-Liss, Inc.  相似文献   

4.
5.
Induction of hepatocyte growth factor/scatter factor (HGF/SF) may be one of the critical steps in organ regeneration, wound healing, and embryogenesis. We previously reported the production of HGF/SF from various human leukemia cell lines and a high level of the growth factor in blood and bone marrow plasma from patients with various types of leukemia. We determined here the effects of hematopoietic cytokines on HGF/SF production in human leukemia cell lines, KG-1, a myeloid cell line, and RPMI-8226, a B cell line. Interferon (IFN)-γ remarkably stimulated HGF/SF production in both cell lines at concentrations of more than 0.1 or 1 IU/ml. IFN-α and IFN-β were as effective as IFN-γ in RPMI-8226 cells, but less than IFN-γ in KG-1 cells. HGF/SF gene expression in KG-1 cells was also up-regulated by IFN-γ. Granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-5 and IL-6 had no effect on HGF/SF production in the 2 leukemia cell lines. We also determined the effects of HGF/SF inducers known for human fibroblasts on the growth factor production in leukemia cells. Out of phorbol 12-myristate 13-acetate (PMA), cholera toxin, IL-1β, and tumor necrosis factor (TNF)-α, the former three were as effective as IFN-γ in KG-1 cells, but only TNF-α stimulated HGF/SF production in RPMI-8226 cells, whose effect was less than those of IFN-α, IFN-β, and IFN-γ. The effect of IFN-γ in KG-1 cells was synergistic with that of PMA. In contrast with the effect in leukemia cells, HGF/SF induction by IFN-γ in human skin fibroblasts was much less than that by PMA or cholera toxin. These results indicated that IFN-γ is a potent inducer of HGF/SF in human leukemia cells. This finding suggests the presence of a homeostatic control mechanism in liver regeneration and repair: hepatic injury, DNA synthesis inhibition, or apoptosis caused by IFN-γ is subsequently overcome by cytokine-induced HGF/SF, a potent promoter of liver DNA synthesis. J. Cell. Physiol. 174:107–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Combinatory responses of proinflamamtory cytokines have been examined on the nitric oxide-mediated function in cultured mouse calvarial osteoblasts. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced iNOS gene expression and NO production, although these actions were inhibited by L-NG-monomethylarginine (L-NMMA) and decreased alkaline phosphatase (ALPase) activity. Furthermore, NO donors, sodium nitroprusside (SNP) and NONOate dose-dependently elevated ALPase activity. In contrast, transforming-growth factor-β (TGF-β) decreased NO production stimulated by IL-1β, TNF-α and interferon-γ (IFN-γ). iNOS was expressed by mouse calvarial osteoblast cells after stimulation with IL-1β, TNF-α, and IFN-γ. Incubation of mouse calvarial osteoblast cells with the cytokines inhibited growth and ALPase activity. However, TGF-β-treatment abolished these effects of IL-1β, TNF-α and IFN-γ on growth inhibition and stimulation of ALPase in mouse calvarial osteoblast cells. In contrast, IL-1β, TNF-α, and IFN-γ exerted growth-inhibiting effects on mouse calvarial osteoblast cells which were partly NO-dependent. The results suggest that NO may act predominantly as a modulator of cytokine-induced effects on mouse calvarial osteoblast cells and TGF-β is a negative regulator of the NO production stimulated by IL-1β, TNF-α and IFN-γ.  相似文献   

7.
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3 days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium+ uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium+ uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium+ uptake in a concentration-dependent fashion with a maximum effect at 5 ng/ml and with an IC50 of ~ 0.4 ng/ml. Moreover, ATP-induced YO-PRO-12+ uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.  相似文献   

8.
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

9.
《Cryobiology》2009,58(3):201-208
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

10.
Interleukin-11 (IL-11) is an anti-apoptotic, anti-inflammatory cytokine with hematopoietic potential. The expression and protective actions of IL-11 have not been explored in the eye. The expression of IL-11 in primary cultures of human retinal pigment epithelial (HRPE) and human corneal fibroblast (HCRF) cells were evaluated in these studies. Constitutive secretion of IL-11 was not observed in either HRPE or HCRF. TNF-α + IL-1 induced IL-11 secretion and this production was inhibited by NFκB pathway inhibitors. IFN-γ significantly inhibited TNF-α and IL-1 induced IL-11 secretion and inhibitors of JAK-STAT pathway reversed this inhibition. TGF-β induced IL-11 secretion that was blocked by TGF-β receptor 1 inhibitor but not by IFN-γ. RT-PCR analysis confirmed the effects of IL-1, TNF-α, IFN-γ and TGF-β on IL-11 secretion at mRNA levels. Our results demonstrate that IL-11 is dramatically up regulated in retina and cornea cells and that IFN-γ is a physiological inhibitor of IL-11 expression.  相似文献   

11.
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.  相似文献   

12.
Zinc deficiency impairs cellular immunity. Up-regulation of mRNA levels of IFN-γ, IL-12Rβ2, and T-bet are essential for Th1 differentiation. We hypothesized that zinc increases Th1 differentiation via up-regulation of IFN-γ and T-bet expression. To test this hypothesis, we used zinc-deficient and zinc-sufficient HUT-78 cells (a Th0 cell line) under different condition of stimulation in this study. We also used TPEN, a zinc-specific chelator, to decrease the bioavailability of zinc in the cells. We measured intracellular free zinc, cytokines, and the mRNAs of T-bet, IFN-γ, and IL-12Rβ2. In this study, we show that in zinc-sufficient HUT-78 cells, mRNA levels of IFN-γ, IL-12Rβ2, and T-bet in PMA/PHA-stimulated cells were increased in comparison to zinc-deficient cells. Although intracellular free zinc was increased slightly in PMA/PHA-stimulated cells, Con-A-stimulated cells in 5 μM zinc medium showed a greater sustained increase in intracellular free zinc in comparison to cells incubated in 1 μM zinc. The cells pre-incubated with TPEN showed decreased mRNA levels of IFN-γ and T-bet mRNAs in comparison to cells without TPEN incubation. We conclude that stimulation of cells by Con-A via TCR, release intracellular free zinc which functions as a signal molecule for generation of IFN-γ and T-bet, and IL-12Rβ2 mRNAs required for Th1 cell differentiation. These results suggest that zinc increase Th1 cell differentiation by up-regulation of IFN-γ and T-bet, and IL-12Rbβ2 mRNAs.  相似文献   

13.
Cytokines are increasingly recognized as important components of the cellular immune responses to intracellular pathogens. In this study, we analyzed the production of TGF-β, IL-10 and IFN-γ by PBMC of unexposed naïve subjects and LCL patients after stimulation with live Leishmania guyanensis (L.g.). We demonstrated that IFN-γ is produced in controls and LCL patients, IL-10 only in LCL patients and TGF-β only in naïve subjects. Furthermore, in naive subjects, neutralization of TGF-β induced IL-10 production. IL-10 produced in naïve subjects when TGF-β is neutralized or in LCL patients did not modify the IFN-γ production but inhibit reactive nitrogen species production. Analysis of the phenotype of IL-10 producing cells in naive subjects when TGF-β is neutralized clearly showed that they are memory CD45RA CD8+ T cells. In LCL patients, IL-10 producing cells are both CD45RA CD4 and CD8+ T cells. The role of these IL-10 producing CD8+ T cells in the development of the diseases should be carefully evaluated.  相似文献   

14.
《Cytokine》2014,67(2):127-132
In tegumentary leishmaniasis caused by Leishmania braziliensis, there is evidence that increased production of IFN-γ, TNF-α and absence of IL-10 is associated with strong inflammatory reaction and with tissue destruction and development of the lesions observed in cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). We evaluate the role of regulatory cytokines and cytokine antagonists in the downregulation of immune response in L. braziliensis infection. Peripheral blood mononuclear cells from CL and ML were stimulated with soluble Leishmania antigen in the presence or absence of regulatory cytokines (IL-10, IL-27 and TGF-β) or antagonists of cytokines (α-TNF-α and α-IFN-γ). Cytokines production (IL-10, IL-17, TNF-α and IFN-γ) was measured by ELISA. IL-10 and TGF-β downmodulate TNF-α and IL-17 production, whereas IL-27 had no effect in the production of TNF-α, IFN-γ and IL-17 in these patients. Neutralization of TNF-α decreased IFN-γ level and the neutralization of IFN-γ decreased TNF-α level and increased IL-10 production. This study demonstrate that IL-10 and TGF-β are cytokines that appear to be more involved in modulation of immune response in CL and ML patients. IL-10 might have a protective role, since the neutralization of IFN-γ decreases the production of TNF-α in an IL-10-dependent manner.  相似文献   

15.
Increasing evidence suggests that transforming growth factor-β (TGF-β) is involved in bone formation during remodeling. Using a recently cloned human leukemic cell line (FLG 29.1 cells) we demonstrate that these cells synthesize and secrete TGF-β1 and that exogenous or autocrine TGF-β1 can induce the same features of osteoclastic-like cells, exerting its effects through the binding to TGF-β specific receptors. Scatchard analysis of 125I-labeled TGF-β1 to FLG 29.1 cells revealed the presence of a single high affinity binding site with a Kd value of ~25 pM and a binding capacity of ~900 sites/cell. Affinity labeling experiments showed that FLG 29.1 cells express type I and type II TGF-β receptors. Stimulation of FLG 29.1 cells with low TGF-β1 doses reduced cell proliferation and increased cell adhesion and tartrate resistant acid phosphatase (TRAcP) activity. Pretreatment of FLG 29.1 cells with TGF-β1 caused a significant and dose-dependent response to calcitonin. Northern blot of total mRNA and analysis of the conditioned media (CM) showed that TGF-β1 was synthesized by FLG 29.1 cells. TPA treatment, which induces partial differentiation of these cells, markedly increased TGF-β1 mRNA expression and growth factor release. The majority of TGF-β1 secreted by TPA-treated cells was in its latent form. However, anti-TGF-β antibodies inhibited TGF-β1 and TPA-induced growth inhibition, calcitonin responsiveness, and TRAcP activity, suggesting that the TPA effect is mediated in part by autocrine TGF-β1 and indicating that the cells can activate and respond to the TGF-β that they secrete. These findings support a potential autocrine role for TGF-β1 in osteoclast differentiation. © 1994 Wiley-Liss, Inc.  相似文献   

16.
17.
Cell-associated plasmin is a putative physiological activator of latent transforming growth factor-β (LTGF-β). Since retinoids enhance the production of plasminogen activator (PA) and thereby increase cell-associated plasmin activity, we tested the possibility that retinoids might induce the activation of LTGF-β using bovine endothelial cells (ECs) as a model system. ECs treated with physiological concentrations of retinol or retinoic acid formed active TGF-β in the culture media in a dose- and time-dependent fashion. Cells were treated with 2 μM retinol for 24 h, and the amount of TGF-β produced during a subsequent 12-h incubation period was measured. Out of a total of 14 pM LTGF-β secreted, 0.7 pM was converted to active TGF-β. Northern blot analyses showed that mRNA levels for TGF-β2 but not for TGF-β1 increased in cells treated with retinol. Inclusion of either inhibitors of PA or of plasmin or antibody against PA in the culture medium as well as depletion of plasminogen from the serum blocked the formation of TGF-β, suggesting that PA, plasminogen, and the resulting plasmin are essential for activation of LTGF-β in retinoid-stimulated cells. Antibody against the LTGF-β binding protein blocked activation implying that localization of LTGF-β through its binding protein may be important. However, inhibition of binding of LTGF-β to the cell surface mannose 6-phosphate receptor did not prevent activation. These data indicate that retinoids up-regulate the production of LTGF-β in ECs and induce activation of LTGF-β, perhaps, by increasing PA and plasmin levels. Thus, TGF-β might be a local mediator of some of the biological activities of retinoids both in vivo and in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号