首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The morphology of the jaw suspension and jaw protrusion mechanism in lamniform sharks is described and mapped onto a cladogram to investigate how changes in jaw suspension and protrusion have evolved. This has revealed that several evolutionary modifications in the musculoskeletal apparatus of the jaws have taken place among lamniform sharks. Galeomorph sharks (Carcharhiniformes, Lamniformes, Orectolobiformes, and Heterodontiformes) have paired ethmopalatine ligaments connecting the ethmoid process of the upper jaw to the ethmoid region of the cranium. Basal lamniform sharks also acquired a novel single palatonasal ligament connecting the symphysis of the upper jaw to the cranium mid-ventral to the nasal capsule. Sharks in the family Lamnidae subsequently lost the original paired ethmopalatine ligament while retaining the novel palatonasal ligament. Thus, basal lamniform taxa (Mitsukurina owstoni, Carcharius taurus, Alopias vulpinnis) have increased ligamentous support of the lateral region of the upper jaw while derived species (Lamnidae) have lost this lateral support but gained anterior support. In previous studies the morphology of the jaw suspension has been shown to play a major role in the mechanism of upper jaw protrusion in elasmobranchs. The preorbitalis is the primary muscle effecting upper jaw protrusion in squalean (sister group to galeomorphs) and carcharhiniform (sister group to lamniforms) sharks. The preorbitalis originates from the quadratomandibularis muscle and inserts onto the nasal capsule in squalean and carcharhiniform sharks. Carcharhiniform sharks have evolved a subdivided preorbitalis muscle with the new division inserting near the ethmoid process of the palatoquadrate (upper jaw). Alopid sharks have also independently evolved a partially subdivided preorbitalis with the new division inserting at the base of the ethmoid process and surrounding connective tissue. Lamnid sharks have retained the two preorbitalis divisions but have modified both of the insertion points. The original ventral preorbitalis division now inserts onto the connective tissue surrounding the mid-region of the upper jaw, while the new dorsal preorbitalis division inserts onto the surrounding connective tissue and skin at a more posterior position on the upper jaw. The retractor muscle of the jaws, the levator hyomandibularis, has also been modified during the evolution of lamniform sharks. In most sharks, including basal lamniforms, the levator hyomandibularis inserts onto the hyomandibula and functions to retract the jaws after protrusion. In alopid and lamnid sharks the levator hyomandibularis inserts primarily onto the upper and lower jaws around the jaw joint and is a more direct route for retracting the jaws. Thus, there has been at least one instance of character loss (ethmopalatine ligament), acquisition (palatonasal ligament), subdivision (preorbitalis), and modification (ventral preorbitalis, dorsal preorbitalis, and levator hyomandibularis) in the ligaments and muscles associated with the jaw suspension and jaw protrusion mechanism in lamniform sharks. While derived lamniform sharks (Lamna nasus, Carcharodon carcharius, and Isurus oxyrinchus) lost the ancestral passive lateral support of the ethmoid articulation of the upper jaw, they simultaneously acquired muscular support by way of the levator hyomandibularis, which provides a dynamic mechanism for lateral support. The evolution of multiple divisions of preorbitalis insertions onto the palatoquadrate and modification of the levator hyomandibularis insertion directly onto the jaws provides an active mechanism for multiple protractions and retractions of the upper jaw, which is advantageous in those sharks that gouge or saw pieces from large oversized prey items.  相似文献   

2.
The recent reexamination of a tooth‐whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth‐whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth‐whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite‐forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft‐bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth‐whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft‐bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth‐whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft‐bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior‐posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth‐whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion. J. Morphol. 276:47–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Protrusion of the jaws during feeding is common in Batoidea (rays, skates, sawfishes, and guitarfishes), members of which possess a highly modified jaw suspension. The lesser electric ray, Narcine brasiliensis, preys primarily on polychaete annelids using a peculiar and highly derived mechanism for jaw protraction. The ray captures its prey by protruding its jaws beneath the substrate and generating subambient buccal pressure to suck worms into its mouth. Initiation of this protrusion is similar to that proposed for other batoids, in that the swing of the distal ends of the hyomandibulae is transmitted to Meckel's cartilage. A "scissor-jack" model of jaw protrusion is proposed for Narcine, in which the coupling of the upper and lower jaws, and extremely flexible symphyses, allow medial compression of the entire jaw complex. This results in a shortening of the distance between the right and left sides of the jaw arch and ventral extension of the jaws. Motion of the skeletal elements involved in this extreme jaw protrusion is convergent with that described for the wobbegong shark, Orectolobus maculatus. Narcine also exhibits asymmetrical protrusion of the jaws from the midline during processing, accomplished by unequal depression of the hyomandibulae. Lower jaw versatility is a functional motif in the batoid feeding mechanism. The pronounced jaw kinesis of N. brasiliensis is partly a function of common batoid characteristics: euhyostylic jaw suspension (decoupling the jaws from the hyoid arch) and complex and subdivided cranial musculature, affording fine motor control. However, this mechanism would not be possible without the loss of the basihyal in narcinid electric rays. The highly protrusible jaw of N. brasiliensis is a versatile and maneuverable feeding apparatus well-suited for the animal's benthic feeding lifestyle.  相似文献   

4.
The anatomy of the feeding apparatus of the nurse shark, Ginglymostoma cirratum, was investigated by gross dissection and computer axial tomography. The labial cartilages, jaws, jaw suspension, muscles, and ligaments of the head are described. Palatoquadrate cartilages articulate with the chondrocranium caudally by short, laterally projecting hyomandibulae and rostrally by ethmoorbital articulations. Short orbital processes of the palatoquadrates are joined to the ethmoid region of the chondrocranium by short, thin ethmopalatine ligaments. In addition, various ligaments, muscles, and the integument contribute to the suspension of the jaws. When the mouth is closed and the palatoquadrate retracted, the palatine process of the palatoquadrate is braced against the ventral surface of the nasal capsule and the ascending process of the palatoquadrate is in contact with the rostrodorsal end of the suborbital shelf. When the mandible is depressed and the palatoquadrate protrudes slightly rostroventrally, the palatoquadrate moves away from the chondrocranium. A dual articulation of the quadratomandibular joint restricts lateral movement between the mandible and the palatoquadrate. The vertically oriented preorbitalis muscle spans the gape and is hypothesized to contribute to the generation of powerful crushing forces for its hard prey. The attachment of the preorbitalis to the prominent labial cartilages is also hypothesized to assist in the retraction of the labial cartilages during jaw closure. Separate levator palatoquadrati and spiracularis muscles, which are longitudinally oriented and attach the chondrocranium to the palatoquadrate, are hypothesized to assist in the retraction of the palatoquadrate during the recovery phase of feeding kinematics. Morphological specializations for suction feeding that contribute to large subambient suction pressures include hypertrophied coracohyoideus and coracobranchiales muscles to depress the hyoid and branchial arches, a small oral aperture with well‐developed labial cartilages that occlude the gape laterally, and small teeth. J. Morphol. 241:33–60, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
6.
The New World cichlids Petenia splendida and Caquetaia spp. possess extraordinarily protrusible jaws. We investigated the feeding behavior of extreme (here defined as greater than 30% head length) and modest jaw-protruding Neotropical cichlids by comparing feeding kinematics, cranial morphology, and feeding performance. Digital high-speed video (500 fps) of P. splendida, C. spectabile, and Astronotus ocellatus feeding on live guppy prey was analyzed to generate kinematic and performance variables. All three cichlid taxa utilized cranial elevation, lower jaw depression, and rotation of the suspensorium to protrude the jaws during feeding experiments. Extreme anterior jaw protrusion in P. splendida and C. spectabile resulted from augmented lower jaw depression and anterior rotation of the suspensorium. Morphological comparisons among eight cichlid species revealed novel anterior and posterior points of flexion within the suspensorium of P. splendida and Caquetaia spp. The combination of anterior and posterior loosening within the suspensorium in P. splendida and Caquetaia spp. permitted considerable anterior rotation of the suspensorium and contributed to protrusion of the jaws. Petenia splendida and C. spectabile exhibited greater ram distance and higher ram velocities than did A. ocellatus, resulting primarily from increased jaw protrusion. Petenia splendida and C. spectabile exhibited lower suction feeding performance than A. ocellatus, as indicated by lower suction-induced prey movements and velocities. Thus, extreme jaw protrusion in these cichlids may represent an adaptation for capturing elusive prey by enhancing the ram velocity of the predator but does not enhance suction feeding performance.  相似文献   

7.
8.
The ability of Perciform fishes to protrude their jaw has likely been critical to the trophic diversification of this group, which includes approximately 20% of all vertebrates. The length of the ascending process of the premaxilla is thought to influence the maximum extent that cichlids and other Perciforms protrude their oral jaw. Using a combination of morphometrics, kinematics, and new phylogenetic hypotheses for 20 Heroine cichlid species, we tested the evolutionary relationship between the length of the premaxillary ascending process and maximum jaw protrusion. In this clade, the length of the ascending process of the premaxilla ranged from 11.6–32.7% with respect to standard length whereas maximum jaw protrusion ranged from 3.5–23.4% with respect to standard length. The evolutionary relationships among the Heroine cichlids obtained from the genetic partitions cytochrome b, S7, and RAG1 showed limited concordance. However, correlations between the length of the ascending process and maximum jaw protrusion were highly significant when examined as independent contrasts using all three topologies. Evolutionary change in the length of the ascending process of the premaxilla is likely critical for determining the amount of jaw protrusion in Perciform groups such as cichlid fishes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 619–629.  相似文献   

9.
Synopsis Luciocephalus pulcher possesses one of the most protrusible jaws known among teleosts, the premaxillae extending anteriorly a distance of 33% of the head length during feeding. Jaw bone movement during feeding proceeds according to a stereotypical pattern and resembles that of other teleosts except for extreme cranial elevation and premaxillary protrusion. Anatomical specializations associated with cranial elevation include: a highly modified first vertebra with a separate neural spine, articular fossae on the posterior aspect, greatly enlarged zygapophyses on the second vertebra with complex articular condyles, and highly pinnate multi-layered epaxial musculature with multiple tendinous insertions on the skull. Luciocephalus, despite the extreme jaw protrusion, does not use suction during prey capture: rather, the prey is captured by a rapid lunge (peak velocity of about 150 cm per sec) and is surrounded by the open mouth. Previous hypotheses of the function of upper jaw protrusion are reviewed in relation to jaw movements inLuciocephalus. Protrusion is not obligatorily linked with suction feeding; behavioral aspects of the feeding process limit the possible range of biological roles of a given morphological specialization, and make prediction of role from structure risky.  相似文献   

10.
Konstantinidis, P. and Johnson, G. David 2012. Ontogeny of the jaw apparatus and suspensorium of the Tetraodontiformes. —Acta Zoologica (Stockholm) 93 : 351–366. The jaw apparatus and suspensorium of adult Tetraodontiformes are well adapted to a durophagous feeding habit. Anatomical indicators are the short, stout jaws and a suspensorium in which the quadrate lies in the same vertical plane as the autopalatine. In contrast, the palatoquadrate of larval Tetraodontiformes generally resembles that of larval percomorphs – a more posteriorly positioned quadrate and a slender and long Meckelian cartilage. Among Tetraodontiformes, the Triacanthodidae retain a protrusible upper jaw and a versatile suspensorium. The jaws of the Balistoidei have greater mobility achieved by a reduced autopalatine that has lost its bony contact with the suspensorium. In contrast to the Balistoidei, the beak‐like jaws of the Tetraodontoidei lack individual teeth in the biting part of the jaws. The autopalatine is enlarged, which results in immobilization of the ethmopalatine articulation. The Ostraciidae are exceptional in having the distal part of the autopalatine reduced, while the proximal part remains attached to the suspensorium.  相似文献   

11.
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.  相似文献   

12.
Premaxillary protrusion has evolved multiple times within teleosts, and has been implicated as contributing to the evolutionary success of clades bearing this adaptation. Cypriniform fishes protrude the jaws via the kinethmoid, a median sesamoid bone that is a synapomorphy for the order. Using five cypriniform species, we provide the first comparative kinematic study of jaw protrusion in this speciose order. Our goals were to compare jaw protrusion in cypriniforms to that in other clades that independently evolved upper jaw protrusion, assess the variation in feeding kinematics among members of the order, and test if variation in the shape of the kinethmoid has an effect on either jaw kinematics or the degree of suction or ram used during a feeding event. We also examined the coordination in the relative timings of upper and lower jaw movements to gain insight on the cypriniform protrusile mechanism. Overall, speed of protrusion in cypriniforms is slower than in other teleosts. Protrusion speed differed significantly among cypriniforms but this is likely not due to kinethmoid shape alone; rather, it may be a result of both kinethmoid shape and branching patterns of the A1 division of the adductor mandibulae. In the benthic cypriniforms investigated here, upper jaw protrusion contributed up to 60% of overall ram of the strikes and interestingly, these species also produced the most suction. There is relatively little coordination of upper and lower jaw movements in cypriniforms, suggesting that previous hypotheses of premaxillary protrusion via lower jaw depression are not supported within Cypriniformes. Significant variation in kinematics suggests that cypriniforms may have the ability to modulate feeding, which could be an advantage if presented with the challenge of feeding on different types of prey.  相似文献   

13.
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.  相似文献   

14.
The goal of this study was to examine the feeding kinematics of the horn shark, Heterodontus francisci, a member of the most basal clade of galeomorph sharks, the Heterodontiformes. The accessibility of the food was manipulated to determine if the horn shark modulated capture. Three different methods of presenting food were used to mimic the different positions of prey items found in the natural diet of the horn shark. Food was presented unattached to the substrate, securely attached, or fitted snugly in a tube. Using high-speed video kinematic analysis, capture events were examined. Heterodontus francisci uses inertial suction facilitated by rapid mandible depression and labial cartilage protrusion to capture food. The horn shark conforms to a capture kinematic profile characteristic of both basal and derived inertial suction feeding sharks. Unusual post-capture behaviors include body leveraging, use of the mouth to form a seal over food, and chisel-like palatoquadrate protrusion. When presented with food of different accessibility, Heterodontus francisci used one consistent kinematic pattern for capture that was not modulated. Only post-capture behaviors varied according to food accessibility.  相似文献   

15.
16.
We analyzed the functional morphology and evolution of the long jaws found in several butterflyfishes. We used a conservative reanalysis of an existing morphological dataset to generate a phylogeny that guided our selection of seven short- and long-jawed taxa in which to investigate the functional anatomy of the head and jaws: Chaetodon xanthurus, Prognathodes falcifer (formerly Chaetodon falcifer), Chelmon rostratus, Heniochus acuminatus, Johnrandallia nigrirostris, Forcipiger flavissimus, and F. longirostris. We used manipulations of fresh, preserved, and cleared and stained specimens to develop mechanical diagrams of how the jaws might be protruded or depressed. Species differed based on the number of joints within the suspensorium. We used high-speed video analysis of five of the seven species (C. xanthurus, Chel. rostratus, H. acuminatus, F. flavissimus, and F. longirostris) to test our predictions based on the mechanical diagrams: two suspensorial joints should facilitate purely anteriorly directed protrusion of the lower jaw, one joint should allow less anterior protrusion and result in more depression of the lower jaw, and no joints in the suspensorium should constrain the lower jaw to simple ventral rotation around the jaw joint, as seen in generalized perciform fishes. We found that the longest-jawed species, F. longirostris, was able to protrude its jaws in a predominantly anterior direction and further than any other species. This was achieved with little input from cranial elevation, the principal input for other known lower jaw protruders, and is hypothesized to be facilitated by separate modifications to the sternohyoideus mechanism and to the adductor arcus palatini muscle. In F. longirostris the adductor arcus palatini muscle has fibers oriented anteroposteriorly rather than medial-laterally, as seen in most other perciforms and in the other butterflyfish studied. These fibers are oriented such that they could rotate the ventral portion of the quadrate anteriorly, thus projecting the lower jaw anteriorly. The intermediate species lack modification of the adductor arcus palatini and do not protrude their jaws as far (in the case of F. flavissimus) or in a purely anterior fashion (in the case of Chel. rostratus). The short-jawed species both exhibit only ventral rotation of the lower jaw, despite the fact that H. acuminatus is closely related to Forcipiger.  相似文献   

17.
Several flatfish species exhibit the unusual feature of bilateral asymmetry in prey capture kinematics. One species, Pleuronichthys verticalis, produces lateral flexion of the jaws during prey capture. This raises two questions: 1) How are asymmetrical movements generated, and 2) How could this unusual jaw mechanism have evolved? In this study, specimens were dissected to determine which cephalic structures might produce asymmetrical jaw movements, hypotheses were formulated about the specific function of these structures, physical models were built to test these hypotheses, and models were compared with prey capture kinematics to assess their accuracy. The results suggest that when the neurocranium rotates dorsally the premaxillae slide off the smooth, rounded surface of the vomer (which is angled toward the blind, or eyeless, side) and are “launched” anteriorly and laterally. The bilaterally asymmetrical trajectory of the upper jaw is determined by the orientation of the “launch pad,” the vomer. During lower jaw depression, the mandibles rotate about their articulations with the quadrate bones of the suspensoria. The quadrato‐mandibular joint is positioned farther anteriorly on the eye side than on the blind side, and this asymmetry deflects the lower jaw toward the blind side. Asymmetry in the articular surfaces of the lower jaw augments this effect. Thus, it appears that fish with intermediate forms of this asymmetrical movement could have evolved from symmetrical ancestors via a few key morphological changes. In addition, similar morphological modifications have been observed in other fish taxa that also produce jaw flexion during feeding, which suggests that there may be convergence in the basic mechanism of asymmetry. J. Morphol. 256:1–12, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

18.
19.
Piscivory in fishes is often associated with the evolution of highly elongate jaws that achieve a large mouth opening, or gape. Belonesox belizanus, the pike killifish, has independently evolved this morphology, which is derived from short-jawed poeciliids within the Cyprinodontiformes. Using kinematic analysis of high-speed video footage, we observed a novel aspect of the elongate jaws of Belonesox; the premaxilla rotates dorsally during mouth opening, while the lower jaw rotates ventrally. Anatomical study revealed that this unusual motion is facilitated by the architecture of the premaxillomandibular ligament, prominent within cyprinodontiforms. In Belonesox, it allows force to be transferred from the lower jaw directly to the premaxilla, thereby causing it to rotate dorsally. This dorsal rotation of the premaxilla appears to be assisted by a mediolateral twisting of the maxilla during jaw opening. Twisting maxillae are found in members of the group such as Fundulus, but are lost in Gambusia. Models revealed that elongate jaws partially account for the enlarged gape, but enhanced rotation at the quadrato-mandibular joint was equally important. The large gape is therefore created by: (i) the convergent evolution of elongate jaws; (ii) enhanced jaw rotation, facilitated by loss of a characteristic cyprinodontiform trait, the lip membrane; and (iii) premaxilla rotation in a novel direction, facilitated by the retention and co-option of additional cyprinodontiform traits, the premaxillomandibular ligament and a twisting maxilla.  相似文献   

20.
The stingray family Myliobatidae contains five durophagous (hard prey specialist) genera and two planktivorous genera. A suite of morphological features makes it possible for the hard prey specialists to crush mollusks and crustaceans in their cartilaginous jaws. These include: 1) flat, pavement-like tooth plates set in an elastic dental ligament; 2) multiple layers of calcified cartilage on the surface of the jaws; 3) calcified struts running through the jaws; and 4) a lever system that amplifies the force of the jaw adductors. Examination of a range of taxa reveals that the presence of multiple layers of calcified cartilage, previously described from just a few species, is a plesiomorphy of Chondrichthyes. Calcified struts within the jaw, called "trabecular cartilage," are found only in the myliobatid genera, including the planktivorous Manta birostris. In the durophagous taxa, the struts are concentrated under the area where prey is crushed, thereby preventing local buckling of the jaws. Trabecular cartilage develops early in ontogeny, and does not appear to develop as a direct result of the stresses associated with feeding on hard prey. A "nutcracker" model of jaw function is proposed. In this model, the restricted gape, fused mandibular and palatoquadrate symphyses, and asynchronous contraction of the jaw adductors function to amplify the closing force by 2-4 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号