首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic linkage studies were conducted in four multigenerational families with X-linked Charcot-Marie-Tooth disease (CMTX), using 12 highly polymorphic short-tandem-repeat markers for the pericentromeric region of the X chromosome. Pairwise linkage analysis with individual markers confirmed tight linkage of CMTX to the pericentromeric region in each family. Multipoint analyses strongly support the order DXS337-CMTX-DXS441-(DXS56,PGK1).  相似文献   

2.
为确定一个X染色体显性遗传先天性眼球震颤家系的致病基因与X染色体的连锁关系, 选用X染色体上的DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192和DXS1232共8个微卫星DNA标记对该家系进行基因扫描与基因分型,并利用LINKAGE等软件包对基因分型结果进行分析,探讨该家系致病基因与X染色体的连锁关系。 两点连锁分析时X染色体短臂4个基因座最大LOD值均小于-1,不支持与该家系致病基因连锁; X染色体长臂4个基因座中最大LOD值达到2,提示存在较大的连锁可能性。该家系的致病基因可初步定位于X染色体长臂,且提示Xq26-Xq28区间附近可能是先天性眼球震颤一个共同的致病基因座,但区间范围仍较大,仍须进一步选择合适的微卫星标记进行精确的定位以缩小候选基因的筛查范围。Abstract: To investigate the relationship between X chromosome and obligatory gene of a pedigree with congenital nystagmus,we used the following markers: DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192 and DXS1232.Genome screening and genotyping were conducted in this pedigree of congenital nystagmus, and linkage analysis by LINKAGE package was used to determine the potential location. The linkage was not found on the Xp ( All LOD score <-1) but on Xq (the maximum LOD score=2). The related gene of this pedigree was located on the long arm of X chromosome. We demonstrate that Xq26-Xq28 is a common locus for CMN. It bring us closer to the identification of a gene responsible for X-linked CMN.  相似文献   

3.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

4.
A young girl with a clinically moderate form of myotubular myopathy was found to carry a cytogenetically detectable deletion in Xq27-q28. The deletion had occurred de novo on the paternal X chromosome. It encompasses the fragile X (FRAXA) and Hunter syndrome (IDS) loci, and the DXS304 and DXS455 markers, in Xq27.3 and proximal Xq28. Other loci from the proximal half of Xq28 (DXS49, DXS256, DXS258, DXS305, and DXS497) were found intact. As the X-linked myotubular myopathy locus (MTM1) was previously mapped to Xq28 by linkage analysis, the present observation suggested that MTM1 is included in the deletion. However, a significant clinical phenotype is unexpected in a female MTM1 carrier. Analysis of inactive X-specific methylation at the androgen receptor gene showed that the deleted X chromosome was active in ~80% of leukocytes. Such unbalanced inactivation may account for the moderate MTM1 phenotype and for the mental retardation that later developed in the patient. This observation is discussed in relation to the hypothesis that a locus modulating X inactivation may lie in the region. Comparison of this deletion with that carried by a male patient with a severe Hunter syndrome phenotype but no myotubular myopathy, in light of recent linkage data on recombinant MTM1 families, led to a considerable refinement of the position of the MTM1 locus, to a region of ~600 kb, between DXS304 and DXS497.  相似文献   

5.
Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked humeroperoneal dystrophy associated with cardiomyopathy that is distinct from the Duchenne and Becker forms of X-linked muscular dystrophy. Linkage analysis has assigned EDMD to the terminal region of the human X chromosome long arm. We report here further linkage analysis in two multigenerational EDMD families using seven Xq28 marker loci. Cumulative lod scores suggest that EDMD is approximately 2 cM from DXS52 (lod = 15.67) and very close to the factor VIII (F8C) and the red/green color pigment (R/GCP) loci, with respective lod scores of 9.62 and 10.77, without a single recombinant. Several recombinations between EDMD and three proximal Xq28 markers suggest that the EDMD gene is located in distal Xq28. Multipoint linkage analysis indicates that the odds are 2,000:1 that EDMD lies distal to DXS305. These data substantially refine the ability to perform accurate carrier detection, prenatal diagnosis, and the presymptomatic diagnosis of at-risk males for EDMD by linkage analysis. The positioning of the EDMD locus close to the loci for F8C and R/GCP will assist in future efforts to identify and isolate the disease gene.  相似文献   

6.
Summary During a systematic chromosomal survey of 167 unrelated boys with the X-linked recessive Menkes disease (MIM 309400), a unique rearrangement of the X chromosome was detected, involving an insertion of the long arm segment Xq13.3-q21.2 into the short arm at band Xp11.4, giving the karyotype 46,XY,ins(X) (p11.4q13.3q21.2). The same rearranged X chromosome was present de novo in the subject's phenotypically normal mother, where it was preferentially inactivated. The restriction fragment length polymorphism and methylation patterns at DXS255 indicated that the rearrangement originated from the maternal grandfather. Together with a previously described X;autosomal translocation in a female Menkes patient, the present finding supports the localization of the Menkes locus (MNK) to Xq13, with a suggested fine mapping to sub-band Xq13.3. This localization is compatible with linkage data in both man and mouse. The chromosomal bend associated with the X-inactivation center (XIC) was present on the proximal long arm of the rearranged X chromosome, in line with a location of XIC proximal to MNK. Combined data suggest the following order: Xcen-XIST(XIC), DXS128-DXS171, DXS56-MNK-PGK1-Xqter.  相似文献   

7.
Genetic Linkage Heterogeneity in Myotubular Myopathy   总被引:3,自引:1,他引:2       下载免费PDF全文
Myotubular myopathy is a severe congenital disease inherited as an X-linked trait (MTM1; McKusick 31040). It has been mapped to the long arm of chromosome X, to the Xq27-28 region. Significant linkage has subsequently been established for the linkage group comprised of DXS304, DXS15, DXS52, and F8C in several studies. To date, published linkage studies have provided no evidence of genetic heterogeneity in severe neonatal myotubular myopathy (XLMTM). We have investigated a family with typical XLMTM in which no linkage to these markers was found. Our findings strongly suggest genetic heterogeneity in myotubular myopathy and indicate that great care should be taken when using Xq28 markers in linkage studies for prenatal diagnosis and genetic counseling.  相似文献   

8.
Linkage studies in X-linked Alport's syndrome   总被引:1,自引:0,他引:1  
Summary Four kindreds segregating for Alport's syndrome (ASLN) compatible with a X-linked inheritance were studied for linkage with polymorphic markers of the human X chromosome. No recombinant was observed between the ASLN locus and the DXS101 and DXS94 loci, the maximum lod scores were z=3.93 and 3.50 respectively. Linkage data between the ASLN locus and the other genetic markers used in the present study are in keeping with the assignment of the mutation to the proximal Xq arm.  相似文献   

9.
Juberg-Marsidi syndrome (McKusick 309590) is a rare X-linked recessive condition characterized by severe mental retardation, growth failure, sensorineural deafness, and microgenitalism. Here we report on the genetic mapping of the Juberg-Marsidi gene to the proximal long arm of the X chromosome (Xq12-q21) by linkage to probe pRX214H1 at the DXS441 locus (Z = 3.24 at theta = .00). Multipoint linkage analysis placed the Juberg-Marsidi gene within the interval defined by the DXS159 and the DXYS1X loci in the Xq12-q21 region. These data provide evidence for the genetic distinction between Juberg-Marsidi syndrome and several other X-linked mental retardation syndromes that have hypogonadism and hypogenitalism and that previously. Finally, the mapping of the Juberg-Marsidi gene is of potential interest for reliable genetic counseling of at-risk women.  相似文献   

10.
Etiological heterogeneity in X-linked spastic paraplegia.   总被引:12,自引:4,他引:8       下载免费PDF全文
We describe a large family (K313) having 12 males affected with X chromosome-linked recessive hereditary spastic paraplegia (HSP). The disease phenotype in K313 is characterized by hyperreflexia and a spastic gait, but intelligence is normal. Carrier females have normal gait and unremarkable neurologic profiles. Eight widely spaced X-linked DNA markers were used to genotype 43 family members. In contrast to a published study of another family, in whom complete linkage of X-linked recessive HSP to distal chromosome Xq markers DXS15 and DXS52 was reported, we observed complete linkage with two DNA markers, pYNH3 and DXS17, located on the middle of the long arm of the X chromosome. These data have been combined with linkage data from a large reference panel of normal families to localize the new X-chromosome marker, pYNH3, and to provide evidence of significant locus heterogeneity between phenotypically distinct forms of X-linked recessive HSP.  相似文献   

11.
Dinucleotide CA repeat sequences in the human genome have been shown to be highly polymorphic due to variation in the length of the repeat-containing segment. Therefore, these markers can serve as anchor loci in the construction of a high-resolution genetic map of the human genome. In this study, we improved the efficiency of typing dinucleotide repeats using multiplex polymerase chain reaction (PCR). Dinucleotide repeat sequences of four previously identified markers (DXS453, DXS458, DXS454, and DXS424) on the long arm of the X chromosome were simultaneously amplified in a single PCR reaction. This multiplex PCR was applied to genotype individuals from the 40 CEPH reference families, and the genotypic data were used to determine the map position of the four loci with respect to eight reference markers in the Xq region by linkage analysis.  相似文献   

12.
Choroideremia (McK30310), an X-linked retinal dystrophy, causes progressive night blindness, visual field constriction, and eventual central blindness in affected males by the third to fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis is not available. Subregional localization of the choroideremia locus to Xq13-22 was accomplished initially by linkage to two restriction-fragment-length polymorphisms (RFLPs), DXYS1 (Xq13-q21.1) and DXS3 (Xq21.3-22). We have now extended our linkage analysis to 12 families using nine RFLP markers between Xp11.3 and Xq26. Recombination frequencies of 0%-4% were found between choroideremia and five markers (PGK, DXS3, DXYS12, DXS72, and DXYS1) located in Xq13-22. The families were also used to measure recombination frequencies between RFLP loci to provide parameters for the program LINKMAP. Multipoint analysis with LINKMAP provided overwhelming evidence for placing the choroideremia locus within the region bounded by DXS1 (Xq11-13) and DXS17 (Xq21.3-q22). At a finer level of resolution, multipoint analysis suggested that the choroideremia locus was proximal to DXS3 (384:1 odds) rather than distal to it. Data were insufficient, however, to distinguish between a gene order that puts choroideremia between DXS3 and DXYS1 and one that places choroideremia proximal to both RFLP loci. These results provide linkage mapping of choroideremia and RFLP loci in this region that will be of use for further genetic studies as well as for clinical applications in this and other human diseases.  相似文献   

13.
Summary The gene involved in an X-linked form of cleft palate has been finely mapped using 14 restriction fragment length polymorphic (RFLP) markers that cover the long arm of the X chromosome. By the combination of deletion mapping and linkage analysis, the gene has been localized between the anonymous DNA markers DXYS12 on the proximal side, and DXS17 distally.  相似文献   

14.
X-linked hydrocephalus is a well-defined disorder which accounts for > or = 7% of hydrocephalus in males. Pathologically, the condition is characterized by stenosis or obliteration of the aqueduct of Sylvius. Previous genetic linkage studies have suggested the likelihood of genetic homogeneity for this condition, with close linkage to the DXS52 and F8C markers in Xq28. We have investigated a family with typical X-linked aqueductal stenosis, in which no linkage to these markers was present. In this family, close linkage was established to the DXS548 and FRAXA loci in Xq27.3. Our findings demonstrate that X-linked aqueductal stenosis may result from mutations at two different loci on the X chromosome. Caution is indicated in using linkage for the prenatal diagnosis of X-linked hydrocephalus.  相似文献   

15.
X-linked albinism-deafness syndrome (ADFN) was described in one Israeli Jewish family and is characterized by congenital nerve deafness and piebaldness. The ADFN mutation probably affects the migration of neural crest-derived precursors of the melanocytes. As a first step toward identifying the ADFN gene, a linkage study was performed to localize the disease locus on the X chromosome. The family was found to be informative for 11 of 107 RFLPs along the X, and two-point analysis showed four of them--factor 9 (F9), DXS91, DXS37, and DNF1--to have definite or suggestive linkage with ADFN. Multipoint linkage analysis indicated two possible orders within this cluster of loci, neither of which was preferable. In both orders F9 was the most distal, and the best estimate for the location of ADFN was between F9 and the next proximal marker (8.6 cM from F9 [Z = 8.1] or 8.3 cM from F9 [Z = 7.9]). These results suggest that the ADFN is at Xq26.3-q27.1. Disagreement between our data and previous localization of DXS91 at Xq11-q13 was resolved by hybridization of the probe pXG-17, which detects the DXS91 locus, to a panel of somatic cell hybrids containing different portions of the X chromosome. This experiment showed that this locus is definitely at Xq24-q26. Together with the linkage data, our results place DXS91 at Xq26 and underscore the importance of using more than one mapping method for the localization of molecular probes.  相似文献   

16.
Choroideremia (McK30310), an X-linked hereditary retinal dystrophy, causes night-blindness, progressive peripheral visual field loss, and, ultimately, central blindness in affected males. The location of choroideremia on the X chromosome is unknown. We have used restriction fragment length polymorphisms from the X chromosome to determine the regional localization of choroideremia by linkage analysis in families with this disease. One such polymorphic locus, DXYS1, located on the long arm (Xq) within bands q13-q21, shows no recombination with choroideremia at lod = 5.78. Therefore, with 90% probability, choroideremia maps within 9 centiMorgans (cM) of DXYS1. Another polymorphic locus, DXS11, located within Xq24-q26, also shows no recombination with choroideremia, although at a smaller lod score of 1.54 (90% probability limit theta less than 30 cM). This linkage with DXS11, a marker that is distal to DXYS1, suggests that the locus for choroideremia is also distal to DXYS1 and lies between these two markers in the region Xq13-q24. These results provide regional mapping for the disease that may be useful for prenatal diagnosis and, perhaps ultimately, for isolating the gene locus for choroideremia.  相似文献   

17.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

18.
Physical mapping studies on the human X chromosome in the region Xq27-Xqter   总被引:23,自引:0,他引:23  
We have characterized three terminal deletions of the long arm of the X chromosome. Southern analysis using Xq27/q28 probes suggests that two of the deletions have breakpoints near the fragile site at Xq27.3. Flow karyotype analysis provides an estimate of 12 X 10(6) bp for the size of the deleted region. We have not detected the deletion breakpoints by pulsed-field gel electrophoresis (PFGE) using the closet DNA probes, proximal to the fragile site. The physical distance between the breakpoints and the probes may therefore be several hundred kilobases. The use of the deletion patients has allowed a preliminary physical map of Xq27/28 to be constructed. Our data suggest that the closest probes to the fragile site on the proximal side are 4D-8 (DXS98), cX55.7 (DXS105), and cX33.2 (DXS152). PFGE studies provide evidence for the physical linkage of 4D-8, cX55.7, and cX33.2. We have also found evidence for the physical linkage of F8C, G6PD, and 767 (DXS115), distal to the fragile site.  相似文献   

19.
The locus responsible for X-linked, nonsyndromic cleft palate and/or ankyloglossia (CPX) has previously been mapped to the proximal long arm of the human X chromosome between Xq21.31 and q21.33 in an Icelandic kindred. We have extended these studies by analyzing an additional 14 informative markers in the family as well as including several newly investigated family members. Recombination analysis indicates that the CPX locus is more proximal than previously thought, within the interval Xq21.1-q21.31. Two recombinants place DXYS1X as the distal flanking marker, while one recombinant defines DXS326 as the proximal flanking marker, an interval of less than 5 cM. Each of the flanking markers recombines with the CPX locus, giving 2-point lod scores of Zmax = 4.16 at θ = 0.08 (DXS326) and Zmax = 5.80 at θ = 0.06 (DXYS1X).  相似文献   

20.
Summary The oto-palado-digital syndrome (OPD) is a rare X-linked disease with diagnostic skeletal features, conduction deafness, cleft palate and mild mental retardation. Differences in clinical presentation between families have led investigators to classify OPD into two subtypes: type I and type II. A linkage study performed in one family segregating for OPD I has recently suggested linkage to three marker loci: DXS15, DXS52 at Xq28, and DXS86 at Xq26. We have investigated an additional OPD I family for linkage by using distal chromosome Xq DNA probes. The linkage data and the analysis of recombination events that have occurred in this family excluded, definitively, the Xq26 region for OPD I, and provide further support for mapping the mutant gene close to the cluster of tightly linked markers DXS15, DXS52 and DXS305 at Xq28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号