首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Trunk muscle onset and cessation in golfers with and without low back pain   总被引:1,自引:0,他引:1  
The knowledge of the onset and cessation timing of the paraspinal muscles that surround the lumbar spine is an important area of research for the understanding of low back pain. This study examined the timing of the erector spinae and external oblique muscle activity in a group of golfers with and without low back pain. The study compared the results of surface electromyography measurements for two groups of golfers. Twelve male golfers who had reported a mild or greater level of pain in the lower back that was experienced while playing golf were examined. A further fifteen male golfers who had reported no history of lower back pain in the previous 12 months were recruited as controls. The results showed that the low-back-pain golfers switched on their erector spinae muscle significantly in advance of the start of the backswing. This finding was not evident in the group who did not have low back pain symptoms. Low-back-pain golfers, therefore, may use the erector spinae muscle as a primary spinal stabiliser instead of the stronger deeper muscles such as transversus abdominis and multifidus. These results may have important implications for conditioning programmes for golfers with low back pain.  相似文献   

2.
This study aimed to clarify the difference in the onset of EMG activity between eight trunk muscles, including the anterior (QL-a) and posterior (QL-p) layers of the quadratus lumborum during rapid shoulder joint abduction. Thirteen healthy men participated in this study. Electromyography of the QL-a, QL-p, transversus abdominis (TrA), internal oblique (IO), external oblique (EO), rectus abdominis (RA), lumbar multifidus (LMF), lumbar erector spinae (LES) on non-movement side, and middle deltoid (MD) on the movement side were measured. Subjects who were standing in a relaxed position performed rapid shoulder abduction with the dominant hand after light stimulus with or without a 3 kg wrist weight. Two-way ANOVA (muscles × weight conditions) was used to compare the onset of trunk muscles relative to that of MD. There was a significant main effect of the muscles. The onset of the QL-a, QL-p, and TrA was significantly earlier than that of the IO, EO, LMF, and LES (P < 0.01). This result suggests that the activities of the QL-a, QL-p, and TrA have a crucial role in controlling the center of mass within the base of support and stabilizing the lumbar spine in the coronal plane during shoulder abduction.  相似文献   

3.
Although exercise speed is an acute variable to prescribe abdominal strengthening programs, current literature lacks studies analyzing the influence of speed on muscular activation in abdominal exercises. The aim of this work was to determine the influence of trunk curl-up speed on the amplitude of muscular activation and the way in which the trunk muscles were coactivated. Twenty recreationally trained volunteers (16 women and 4 men; age, 23.7 +/- 4.3 years; height, 166.2 +/- 6.3 cm; mass, 61.0 +/- 8.2 kg) participated in this study. Surface electromyographic data were collected from the rectus abdominis, external oblique, internal oblique, and erector spinae during 4 different curl-up cadences [1 repetition per 4 seconds (C4), 1 repetition per 2 seconds (C2), 1 repetition per 1.5 seconds (C1.5), 1 repetition per 1 second (C1)], and during maximum speed curl-ups (Cmax). The electromyographic amplitude was averaged and normalized using maximum voluntary isometric contractions (MVICs). Statistical analyses were performed using repeated-analyses of variance. Normalized electromyographic mean amplitudes of trunk muscles increased with curl-up speed. Although the rectus abdominis (ranged from 23.3% of MVICs at C4 to 49.6% of MVICs at Cmax) and internal oblique (ranged from 19.2% of MVICs at C4 to 48.5% of MVICs at Cmax) were the most active analyzed muscles at each speed, contribution of the external oblique increased appreciably with velocity (ranged from 5.3% of MVICs at C4 to 33.3% of MVICs at Cmax). Increasing trunk curl-up speed supposed greater trunk muscular coactivation, probably required for a faster performance and to ensure dynamic spine stability. On the basis of our findings, curl-up speed had an important effect on trunk muscular recruitment and must be taken into account when prescribing exercise programs for abdominal conditioning.  相似文献   

4.
Static flexion of the lumbar spine with constant load applied to the viscoelastic structures for 20 minutes and for 50 minutes resulted in development of spasms and inhibition in the multifidus muscles (e.g., deep erector spinae) and in creep of the supraspinous ligament in the feline model. The development of spasms and inhibition was not dependent on load magnitude. It is suggested that occupational and sports activities which require prolonged static lumbar flexion within the physiological range can cause a "sprain"-like injury to the ligaments, which in turn reflexively induce spasms and inhibition in some erector spinae muscles. Such disorder may take a long time to recover, in the order of days to weeks, depending on the level of creep developed in the tissues.  相似文献   

5.
The purpose of this research was to investigate the contributions of individual muscles to joint rotational stiffness and total joint rotational stiffness about the lumbar spine’s L4–5 joint prior to, and following, sudden dynamic lateral perturbations to the trunk. Kinematic and surface EMG data were collected while subjects maintained a kneeling posture on a robotic platform, while restrained so that motions caused by the perturbation were transferred to the pelvis, causing motion of the trunk and head. The robotic platform caused sudden inertial trunk lateral perturbations to the right or left, with or without timing and direction knowledge. An EMG-driven model of the lumbar spine was used to calculate the muscle forces and contributions to joint rotational stiffness during the perturbations. Data showed 95% and 106% increases in total joint rotational stiffness, about the lateral bend and axial twist axes, when subjects had knowledge of the timing of the perturbation. Also, the contralateral muscles exhibited a significantly larger total joint rotational stiffness about the lateral bend axis, and earlier surface EMG responses, than the ipsilateral muscles. The results indicate that, when the timing of the perturbation was unknown, subjects relied more on delayed muscle forces following the perturbation to stiffen the L4–5 joint.  相似文献   

6.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

7.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

8.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

9.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

10.
Passive mechanical properties differ between muscle groups within a species. Altered functional demands can also shift the passive force-length relationship. The extent that passive mechanical properties differ within a muscle group (e.g. spine extensors) or between homologous muscles of different species is unknown. It was hypothesized that multifidus, believed to specialize in spine stabilization, would generate greater passive tensile stresses under isometric conditions than erector spinae, which have more generalized functions of moving and stabilizing the spine; observing greater multifidus moduli in different species would strengthen this hypothesis. Permeabilized fibre bundles (n = 337) from the multifidus and erector spinae of mice, rats, and rabbits were mechanically tested. A novel logistic function was fit to the experimental data to fully characterize passive stress and modulus. Species had the greatest effect on passive muscle parameters with mice having the largest moduli at all lengths. Rats generated less passive stress than rabbits due to a shift of the passive force-length relationship towards longer muscle lengths. Rat multifidus generated slightly greater stresses than erector spinae, but no differences were observed between mouse muscles. The secondary objective was to determine the parameters required to simulate the passive force-length relationship. Experimental data were compared to the passive muscle model in OpenSim. The default OpenSim model, optimized for hindlimb muscles, did not fit any of the spine muscles tested; however, the model could accurately simulate experimental data after adjusting the input parameters. The optimal parameters for modelling the passive force-length relationships of spine muscles in OpenSim are presented.  相似文献   

11.
The purpose of this study was to clarify the effectiveness of expiration and abdominal bracing maneuvers in response to sudden trunk loading in healthy subjects. Fifteen healthy male subjects were anteriorly loaded under different experimental conditions. Tests were conducted at rest and while performing each of the stabilization maneuvers (expiration and abdominal bracing) at 15% of the maximal voluntary isometric contraction of the internal oblique muscle. Subjects had no knowledge of the perturbation timing. An electromyographic biofeedback system was used to control the intensity of internal oblique muscle activation. Muscular pre-activation of three trunk muscles (internal oblique, external oblique, and L3 erector spinae muscles) and lumbar acceleration in response to loading were measured. The expiration and abdominal bracing maneuvers promoted torso co-contraction, reduced the magnitude of lumbar acceleration, and increased spinal stability compared to the resting condition. There were no differences between the expiration and abdominal bracing maneuvers in the pre-activation of the three trunk muscles or in lumbar acceleration in response to loading. It appears that both expiration and abdominal bracing maneuvers are effective in increasing spinal stability in response to sudden anterior loading.  相似文献   

12.
Intra-abdominal pressure mechanism for stabilizing the lumbar spine   总被引:8,自引:0,他引:8  
Currently, intra-abdominal pressure (IAP) is thought to provide stability to the lumbar spine but the exact principles have yet to be specified. A simplified physical model was constructed and theoretical calculations performed to illustrate a possible intra-abdominal pressure mechanism for stabilizing the spine. The model consisted of an inverted pendulum with linear springs representing abdominal and erector spinae muscle groups. The IAP force was simulated with a pneumatic piston activated with compressed air. The critical load of the model was calculated theoretically based on the minimum potential energy principle and obtained experimentally by increasing weight on the model until the point of buckling. Two distinct mechanisms were simulated separately and in combination. One was antagonistic flexor extensor muscle coactivation and the second was abdominal muscle activation along with generation of IAP. Both mechanisms were effective in stabilizing the model of a lumbar spine. The critical load and therefore the stability of the spine model increased with either increased antagonistic muscle coactivation forces or increased IAP along with increased abdominal spring force. Both mechanisms were also effective in providing mechanical stability to the spine model when activated simultaneously. Theoretical calculation of the critical load agreed very well with experimental results (95.5% average error). The IAP mechanism for stabilizing the lumbar spine appears preferable in tasks that demand trunk extensor moment such as lifting or jumping. This mechanism can increase spine stability without the additional coactivation of erector spinae muscles.  相似文献   

13.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

14.
Objective:The purpose of this study was to investigate the difference in back extensor muscle endurance before and after kinesiology tape application to all back stabilizer muscles and to the erector spinae alone.Methods:We assessed 32 adults (16 men and 16 women), randomly divided into two groups. In the erector spinae taping (EST) group, kinesiology tape was applied only to the erector spinae, and in the total muscle taping (TMT) group, kinesiology tape was applied to the erector spinae, latissimus dorsi, lower trapezius, internal oblique abdominis, and external oblique abdominis.Results:Both groups showed significant difference in terms of back extensor muscle endurance after kinesiology tape application (p<0.05). Between-group comparison revealed that the TMT group had more back extensor muscle endurance than the EST group (p<0.05) after kinesiology tape application.Conclusions:These findings indicate that, to improve back extensor muscle endurance, kinesiology tape should be applied to all back stabilizer muscles, rather than to the erector spinae muscles alone.  相似文献   

15.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   

16.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

17.
摘要 目的:分析椎旁肌退变与短节段腰椎融合内固定术后螺钉松动的相关性。方法:回顾性分析2018年6月至2020年6月广州市番禺区中医院行短节段腰椎融合内固定术治疗的251例腰椎退行性疾病患者的临床资料,根据术后螺钉松动情况分为松动组(n=47)和对照组(n=204)。收集患者的临床资料,对比两组椎间植骨融合情况、螺钉直径、螺钉长度、螺钉椎内长度、椎旁肌的肌肉相对总横截面积(rtCSA)和脂肪浸润程度(FI)。应用多因素logistic回归分析短节段腰椎融合内固定术后螺钉松动发生的危险因素,并描绘受试者工作特征(ROC)曲线检验危险因素预测短节段腰椎融合内固定术后螺钉松动的效能。结果:251例患者平均随访时间(24.16±7.28)个月,其中47例患者在最终随访时发生螺钉松动,总体松动率18.73%。两组性别、骨密度比较差异有统计学意义(P<0.05)。与对照组相比,松动组的多裂肌FI增高(P<0.05)。与对照组相比,松动组的竖脊肌rtCSA减少,竖脊肌FI增高(P<0.05)。多因素logistic回归分析显示竖脊肌FI较高是短节段腰椎融合内固定术后螺钉松动发生的独立危险因素,而竖脊肌rtCSA较高、骨密度较高则是保护因素(P<0.05)。ROC曲线分析显示:骨密度、竖脊肌rtCSA、竖脊肌FI等3指标单独及联合应用时:ROC-AUC(0.95CI)分别为0.708(0.446~0.971)、0.736(0.495~0.951)、0.648(0.335~0.965)、0.842(0.719~0.957)。联合应用预测效能较高。结论:竖脊肌的退变是短节段腰椎融合内固定术后螺钉松动的危险因素。当骨密度<-3.00 g/cm2、竖脊肌rtCSA<1.45%及FI>35.00%时,提示术后发生螺钉松动的可能性大,可作为短节段腰椎融合内固定术后评价螺钉松动风险的参考指标。  相似文献   

18.
The purpose of this study was to compare the activation of the rectus abdominis (RA), external oblique abdominis (EO), lower abdominal stabilizers (LASs), and lumbar erector spinae (LES) during performance of 3 traditional trunk exercises vs. exercise on the Ab Circle device. Surface electromyography was used to assess 12 subjects (6 men, 6 women) for 6 exercise conditions, including: abdominal crunch, side bridge, quadruped, and Ab Circle levels 1-3. For the RA, the abdominal crunch elicited significantly greater activity vs. the Ab Circle level 1, and the side bridge elicited significantly greater activity vs. the Ab Circle levels 1 and 2. For the EO, the side bridge elicited significantly greater activity vs. the quadruped. No significant differences were noted between conditions for the LASs. For the LES, the side bridge and quadruped elicited significantly greater activity vs. the abdominal crunch. The results of this study indicate that the anterior, posterior, and lateral trunk musculature can be activated to similar or even greater levels by performing the 3 traditional trunk exercises vs. the Ab Circle. This was particularly evident for the side bridge exercise, which elicited significantly greater activity of the RA vs. the Ab Circle levels 1 and 2, and elicited similar activity of the EO, LASs, and LES at all 3 Ab Circle levels.  相似文献   

19.
The purpose of this study was to add to the growing database of cross-sectional areas and moment arm lengths of trunk musculature using the methods of computerized tomographic scanning. An attempt was also made to estimate muscle force and moment generating capacity under various reported values of muscle force per unit cross-sectional area. The data were obtained on 13 active men 40.5 +/- 11.9 years of age, 173.8 +/- 5.9 cm tall and 89.1 +/- 11.7 kg body mass. Transverse CT scans were taken at the level of the L4/L5 disc with the subjects supine. Muscle cross-sectional areas were measured from 35 mm slides of the scans using a planimeter and moment arm length in the transverse plane were taken from the centroid of the L4/L5 disc to the centroid of the muscle section. Prior to estimating force and moment generating capacity, areas were corrected, where necessary, for fibre pennation angle to produce a physiological cross-sectional area. The physiological cross-sectional areas (cm2) for one side of the body were (mean +/- S.D.): sacrospinalis (SS) 15.9 +/- 2.5; multifidus (Mu) 4.2 +/- 0.7; psoas (Ps) 17.6 +/- 4.0; rectus abdominis (RA) 7.9 +/- 2.5; external oblique (EO) 9.4 +/- 2.7; internal oblique (IO) 8.1 +/- 2.3; transverse abdominus (TA) 2.9 +/- 1.3. The anterior posterior moment arm lengths were: erector mass (SS and Mu combined) 5.90 +/- 0.52; Ps 0.58 +/- 0.40; R.A. 10.28 +/- 2.07; E.O. (anterior portion) 5.94 +/- 1.39; E.O. (posterior portion) 2.08 +/- 1.39; I.O. (anterior portion) 6.92 +/- 1.63; I.O. (posterior portion) 3.85 +/- 1.54. The corresponding lateral moment arm lengths were: 3.26 +/- 0.36; 4.88 +/- 0.36; 4.35 +/- 1.31; 12.86 +/- 1.93; 13.95 +/- 1.16; 10.77 +/- 2.02; 12.52 +/- 1.26. The maximum force per unit cross-section that human muscles are capable of generating is not well defined. However, assuming an intermediate value of 50 N cm-2 of physiological cross-section, the erector musculature observed at the L4/L5 level should be capable of generating an extensor moment of about 118 N.m. At a muscle stress of 30 or 90 N cm-2, values also reported on human muscle, the moment would be 71 and 213 Nm, respectively. It must be remembered, however, that muscles not observable at the L4/L5 level can create moments around that center of rotation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号