首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   

2.
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.  相似文献   

3.
Yeast centromere DNA (CEN) affinity column chromatography has been used to purify several putative centromere and kinetochore proteins from yeast chromatin extracts. The single yeast gene (CBF5) specifying one of the major low-affinity centromere-binding proteins (p64'/CBF5p) has been cloned and shown to be essential for viability of Saccharomyces cerevisiae. CBF5 specifies a 55-kDa highly charged protein that contains a repeating KKD/E sequence domain near the C terminus, similar to known microtubule-binding domains in microtubule-associated proteins 1A and 1B, CBF5p, obtained by overexpression in bacterial cells, binds microtubules in vitro, whereas C-terminal deleted proteins lacking the (KKD/E)n domain do not. Dividing yeast cells containing a C-terminal truncated CBF5 gene, producing CBF5p containing only three copies of the KKD/E repeat, delay with replicated genomes at the G2/M phase of the cell cycle, while depletion of CBF5p arrests most cells in G1/S. Overproduction of CBF5p in S. cerevisiae complements a temperature sensitivity mutation in the gene (CBF2) specifying the 110-kDa subunit of the high-affinity CEN DNA-binding factor CBF3, suggesting in vivo interaction of CBF5p and CBF3. A second low-affinity centromere-binding factor has been identified as topoisomerase II.  相似文献   

4.
The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.  相似文献   

5.
M Cai  R W Davis 《Cell》1990,61(3):437-446
The centromere and its binding proteins constitute the kinetochore structure of metaphase chromosomes, which is crucial for the high accuracy of the chromosome segregation process. Isolation and analysis of the gene encoding a centromere binding protein from the yeast S. cerevisiae, CBF1, are described in this paper. DNA sequence analysis of the CBF1 gene reveals homology with the transforming protein myc and a family of regulatory proteins known as the helix-loop-helix (HLH) proteins. Disruption of the CBF1 gene caused a decrease in the growth rate, an increase in the rate of chromosome loss/nondisjunction, and hypersensitivity to the antimitotic drug thiabendazole. Unexpectedly, the cbf1 null mutation concomitantly resulted in a methionine auxotrophic phenotype, which suggests that CBF1, like other HLH proteins in higher eukaryotic cells, participates in the regulation of gene expression.  相似文献   

6.
CEP3 encodes a centromere protein of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6       下载免费PDF全文
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).  相似文献   

7.
J Lechner  J Carbon 《Cell》1991,64(4):717-725
A key protein component (CBF3) of the budding yeast (S. cerevisiae) centromere/kinetochore has been purified and characterized. CBF3 is a 240 kd multisubunit protein complex that binds specifically to the yeast wild-type centromere DNA (CEN), but not to nonfunctional CEN DNA containing a single base substitution in the critical CDEIII consensus sequence. When purified by affinity chromatography, CBF3 contains three protein components: CBF3A (110 kd), CBF3B (64 kd), and CBF3C (58 kd). Highly purified CBF3 requires the presence of a separate assembly factor or chaperone activity to bind to CEN DNA. Treatment with phosphatase inactivates CBF3, indicating that at least one of the CBF3 subunits must be phosphorylated for DNA binding to occur. A 56 bp region including the 26 bp CDEIII consensus is protected from DNAase I cleavage in the CBF3-CEN DNA complex.  相似文献   

8.
9.
Using a two-hybrid system, we cloned a human cDNA encoding a ubiquitin-conjugating enzyme (UBC), hUBC9, which interacts specifically with all three subunits of theSaccharomyces cerevisiae centromere DNA-binding core complex, CBF3. The hUBC9 protein shows highest homology to a new member of the UBC family: 54% identity toS. cerevisiae Ubc9p and 64% identity toSchizosaccharomyces pombe (Sp) hus5. Overexpression of hUBC9 partially suppresses aS. cerevisiae ubc9 temperature-sensitive mutation, indicating that theUBC9 gene family is also functionally conserved. Like hUBC9, Sphus5 also interacts specifically with all three subunits of the CBF3 complex. However,S. cerevisiae Ubc9p interacts only with the Cbf3p subunit (64 kDa) of the CBF3 complex, indicating the specificity of the interaction betweenS. cerevisiae Ubc9 and Cbf3p proteins. The function of Ubc9p in the G2/M phase ofS. cerevisiae could be related to regulation of centromere proteins in chromosome segregation in mitosis. Therefore, the ubiquitination process and centromere function may be linked to chromosome segregation. We also provide further in vivo evidence that Mck1p, a protein kinase, is specifically associated with the centromere proteins Cbf2p and Cbf5p, which were previously shown to interact in vitro.  相似文献   

10.
Using a two-hybrid system, we cloned a human cDNA encoding a ubiquitin-conjugating enzyme (UBC), hUBC9, which interacts specifically with all three subunits of theSaccharomyces cerevisiae centromere DNA-binding core complex, CBF3. The hUBC9 protein shows highest homology to a new member of the UBC family: 54% identity toS. cerevisiae Ubc9p and 64% identity toSchizosaccharomyces pombe (Sp) hus5. Overexpression of hUBC9 partially suppresses aS. cerevisiae ubc9 temperature-sensitive mutation, indicating that theUBC9 gene family is also functionally conserved. Like hUBC9, Sphus5 also interacts specifically with all three subunits of the CBF3 complex. However,S. cerevisiae Ubc9p interacts only with the Cbf3p subunit (64 kDa) of the CBF3 complex, indicating the specificity of the interaction betweenS. cerevisiae Ubc9 and Cbf3p proteins. The function of Ubc9p in the G2/M phase ofS. cerevisiae could be related to regulation of centromere proteins in chromosome segregation in mitosis. Therefore, the ubiquitination process and centromere function may be linked to chromosome segregation. We also provide further in vivo evidence that Mck1p, a protein kinase, is specifically associated with the centromere proteins Cbf2p and Cbf5p, which were previously shown to interact in vitro.  相似文献   

11.
Cse4 is the budding yeast homologue of CENP-A, a modified histone H3 that specifies the base of kinetochores in all eukaryotes. Budding yeast is unique in having only one kinetochore microtubule attachment site per centromere. The centromere is specified by CEN DNA, a sequence-specific binding complex (CBF3), and a Cse4-containing nucleosome. Here we compare the ratio of kinetochore proximal Cse4-GFP fluorescence at anaphase to several standards including purified EGFP molecules in vitro to generate a calibration curve for the copy number of GFP-fusion proteins. Our results yield a mean of ~5 Cse4s, ~3 inner kinetochore CBF3 complexes, and ~20 outer kinetochore Ndc80 complexes. Our calibrated measurements increase 2.5-3-fold protein copy numbers at eukaryotic kinetochores based on previous ratio measurements assuming two Cse4s per budding yeast kinetochore. All approximately five Cse4s may be associated with the CEN nucleosome, but we show that a mean of three Cse4s could be located within flanking nucleosomes at random sites that differ between chromosomes.  相似文献   

12.
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the K-type repeat. Both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B. In this study, we determined that Abp1p binds to at least one of its target sequences within S. pombe centromere II central core (cc2) DNA with an affinity (K(s) = 7 x 10(9) M(-1)) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Deltaabp1 Deltacbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency. The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.  相似文献   

13.
Eukaryotic chromosomes contain a specialised region known as the centromere, which forms the platform for kinetochore assembly and microtubule attachment. The centromere is distinguished by the presence of nucleosomes containing the histone H3 variant, CENP‐A. In budding yeast, centromere establishment begins with the recognition of a specific DNA sequence by the CBF3 complex. This in turn facilitates CENP‐ACse4 nucleosome deposition and kinetochore assembly. Here, we describe a 3.6 Å single‐particle cryo‐EM reconstruction of the core CBF3 complex, incorporating the sequence‐specific DNA‐binding protein Cep3 together with regulatory subunits Ctf13 and Skp1. This provides the first structural data on Ctf13, defining it as an F‐box protein of the leucine‐rich‐repeat family, and demonstrates how a novel F‐box‐mediated interaction between Ctf13 and Skp1 is responsible for initial assembly of the CBF3 complex.  相似文献   

14.
15.
O Stemmann  J Lechner 《The EMBO journal》1996,15(14):3611-3620
We have developed methods to reconstitute the centromere DNA (CEN)-bound Saccharomyces cerevisiae kinetochore complex, CBF3, from isolated CBF3 components in vitro. This revealed that cooperation of at least three CBF3 components is imperatively required to form an activity that specifically binds to the centromere DNA in vitro. Two of the CBF3 proteins, Cbf3a and Cbf3b, that were used in the reconstitution were obtained from heterologous systems. In contrast, Cbf3c, the third CBF3 component known, had to be purified from S. cerevisiae to obtain a Cbf3c preparation that was competent to reconstitute the CBF3-CEN complex in combination with Cbf3a and Cbf3b. This led to the identification of a 29 kDa protein that co-purified with Cbf3c. The 29 kDa protein was shown to be a fourth component of CBF3 and therefore was named Cbf3d. Analysing the Cbf3d gene revealed that Cbf3d exhibits strong homology to p19SKP1, a human protein that is part of active cyclin A-CDK2 complexes. Therefore, Cbf3d is the only CBF3 protein that has a known homologue in higher eukaryotes and may provide the anchor that directs cell cycle-regulated proteins to the kinetochore.  相似文献   

16.
CBF2/NDC10/CTF14 encodes the 110-kDa subunit of CBF3, a key component of the yeast centromere/kinetochore. Overexpression of yeast CDC34 specifically suppresses the temperature-sensitive growth phenotype of the ndc10-1 mutation. Mutations in CDC34, which specifies a ubiquitin-conjugating enzyme, arrest yeast cells in the G1 phase of the cell cycle, with no intact spindles formed (M. G. Goebl, J. Yochem, S. Jentsch, J. P. McGrath, A. Varshavsky, and B. Byers, Science 241:1331-1335, 1988). The cdc34-2 mutation drastically alters the pattern of Cbf2p modification. Results of experiments using antibodies against Cbf2p and ubiquitin indicate that Cbf2p is ubiquitinated in vivo. Purified Cdc34p catalyzes the formation of Cbf2p-monoubiquitin conjugate in vitro. These data suggest that Cbf2p is an endogenous substrate of the CDC34 ubiquitin-conjugating enzyme and imply that ubiquitination of a kinetochore protein plays a regulatory role in kinetochore function.  相似文献   

17.
The centromere and promoter factor Cpf1 binds centromere DNA element I found in all centromere DNAs from the yeast Saccharomyces cerevisiae. We analyzed thirty different point mutations in or around CEN6-CDEI (ATCACGTG) for their relative binding affinity to Cpf1 and these data were compared with the in vivo centromere function of these mutants. We show that the minimal length of the Cpf1 binding site needed for full in vitro binding and in vivo activity is 10 base pairs long comprised of CDEI plus the two base pairs 3' of this sequence. The palindromic core sequence CACGTG is most important for in vivo CEN function and in vitro Cpf1 binding. Symmetrical mutations in either halfsite of the core sequence affect in vitro Cpf1 binding and in vivo mitotic centromere function asymmetrically albeit to a different extent. Enlarging the CDEI palindrome to 12 or 20 bps increases in vitro Cpf1 binding but results in increased chromosome loss rates suggesting a need for asymmetrical Cpf1 binding sequences. Additionally, the ability of Cpf1 protein to bind a mutant CDEI element in vitro does not parallel the ability of that mutant to confer in vivo CEN activity. Our data indicate that the in vitro binding characteristics of Cpf1 to CDEI only partly overlap with their corresponding activity within the centromere complex, thus suggesting that in the in vivo situation the CDEI/Cpf1 complex might undergo interactions with other centromere DNA/protein complexes.  相似文献   

18.
A mutant, ndc10-1, was isolated by anti-tubulin staining of temperature- sensitive mutant banks of budding yeast. ndc10-1 has a defect chromosome segregation since chromosomes remains at one pole of the anaphase spindle. This produces one polyploid cell and one aploid cell, each containing a spindle pole body (SPD. NDC10 was cloned and sequenced and is identical to CBF2 (Jiang, W., J. Lechnermn and J. Carbon. 1993. J. Cell Biol. 121:513) which is the 110-kD component of a centromere DNA binding complex (Lechner, J., and J. Carbon. 1991. Cell. 61:717-725). NDC10 is an essential gene. Antibodies to Ndc10p labeled the SPB region in nearly all the cells examined including nonmitotic cells. In some cells with short spindles which may be in metaphase, staining was also observed along the spindle. The staining pattern and the phenotype of ndc10-1 are consistent with Cbf2p/Ndc10p being a kinetochore protein, and provide in vivo evidence for its role in the attachment of chromosomes to the spindle.  相似文献   

19.
20.
Vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae missort and secrete vacuolar hydrolases. The gene affected in one of these mutants, VPS21, encodes a member of the Sec4/Ypt/Rab family of small GTPases. Rab proteins play an essential role in vesicle-mediated protein transport. Using both yeast two-hybrid assays and chemical cross-linking, we have identified another VPS gene product, Vps9p, that preferentially interacts with a mutant form of Vps21p-S21N that binds GDP but not GTP. In vitro purified Vps9p was found to stimulate GDP release from Vps21p in a dose-dependent manner. Vps9p also stimulated GTP association as a result of facilitated GDP release. However, Vps9p did not stimulate guanine nucleotide exchange of GTP-bound Vps21p or GTP hydrolysis. We tested the ability of Vps9p to stimulate the intrinsic guanine nucleotide exchange activity of Rab5, which is a mammalian sequence homologue of Vps21p, and Ypt7p, which is another yeast Rab protein involved in vacuolar protein transport. Rab5, but not Ypt7p was responsive to Vps9p, which indicates that Vps9p recognizes sequence variation among Rab proteins. We conclude that Vps9p is a novel guanine nucleotide exchange factor that is specific for Vps21p/Rab5. Since there are no obvious Vps9p sequence homologues in yeast, Vps9p may also possess unique regulatory functions required for vacuolar protein transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号