首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Mammalian cells exhibit complex cellular responses to DNA damage, including cell cycle arrest, DNA repair and apoptosis. Defects in any one of these responses can result in carcinogenesis. Absence of the chromatin remodeling complex Swi/Snf is found in many instances of cancer, and we have investigated its role in the UV damage response. The human carcinoma cell line SW13 is deficient in Swi/Snf and is very sensitive to UV radiation. In contrast, SW13 cells with ectopic Brg1 expression regain active Swi/Snf and become significantly more resistant to UV radiation. Sensitivity to UV light correlates well with dramatic UV induced apoptosis in SW13 cells, but not in SW13 cells expressing Brg1. We show that SW13 cells synchronized at the G1/S border progress into S phase after UV irradiation, and this checkpoint deficiency is corrected after Brg1 expression is restored. Interestingly, Brg1 expression in SW13 cells restores expression of two DNA damage responsive genes, Gadd45a and p21. Furthermore, Gadd45a induction and p21 degradation were observed in the Brg1-expressing SW13 cells after UV irradiation. Our findings demonstrate that Swi/Snf protects cells against deleterious consequences of UV induced DNA damage. These results also indicate that Swi/Snf may play a role in replication checkpoint activation after UV damage via regulation of the two PCNA-binding proteins Gadd45a and p21.  相似文献   

5.
6.
The LKB1 (also called serine/threonine kinase 11) tumor suppressor gene was cloned in 1998 by linkage analysis of Peutz-Jeghers cancer syndrome patients. Mammalian LKB1 has been implicated as a regulator of multiple biological processes and signaling pathways, including the control of cell-cycle arrest, p53-mediated apoptosis, Wnt signaling, transforming growth factor (TGF)-beta signaling, ras-induced cell transformation, and energy metabolism. The Caenorhabditis elegans and Drosophila melanogaster LKB1 homologs, termed PAR4 and dLKB1, respectively, regulate cell polarity. Recently, mammalian LKB1 was found to be active only in a complex with two other proteins--STRAD and MO25--and to induce complete polarization of intestinal epithelial cells in a cell-autonomous fashion. In this article, we summarize the findings regarding LKB1 over the past six years. In addition, we discuss LKB1 in polarity in the context of both the other PAR proteins and its tumor suppressive activities.  相似文献   

7.
8.
The LKB1 gene encodes a serine/threonine kinase mutated in Peutz-Jeghers cancer syndrome. Despite several proposed models for LKB1 function in development and in tumour suppression, the detailed molecular action of LKB1 remains undefined. Here, we report the identification and characterization of an LKB1-specific adaptor protein and substrate, STRAD (STe20 Related ADaptor). STRAD consists of a STE20- like kinase domain, but lacks several residues that are indispensable for intrinsic catalytic activity. Endogenous LKB1 and STRAD form a complex in which STRAD activates LKB1, resulting in phosphorylation of both partners. STRAD determines the subcellular localization of wild-type, but not mutant LKB1, translocating it from nucleus to cytoplasm. One LKB1 mutation previously identified in a Peutz-Jeghers family that does not compromise its kinase activity is shown here to interfere with LKB1 binding to STRAD, and hence with STRAD-dependent regulation. Removal of endogenous STRAD by siRNA abrogates the LKB1-induced G(1) arrest. Our results imply that STRAD plays a key role in regulating the tumour suppressor activities of LKB1.  相似文献   

9.
Peutz-Jeghers syndrome is an inherited cancer syndrome that results in a greatly increased risk of developing tumors in those affected. The causative gene is a protein kinase termed LKB1, predicted to function as a tumor suppressor. The mechanism by which LKB1 is regulated in cells is not known. Here, we demonstrate that stimulation of Rat-2 or embryonic stem cells with activators of ERK1/2 or of cAMP-dependent protein kinase induced phosphorylation of endogenously expressed LKB1 at Ser(431). We present pharmacological and genetic evidence that p90(RSK) mediated this phosphorylation in response to agonists that activate ERK1/2 and that cAMP-dependent protein kinase mediated this phosphorylation in response to agonists that activate adenylate cyclase. Ser(431) of LKB1 lies adjacent to a putative prenylation motif, and we demonstrate that full-length LKB1 expressed in 293 cells was prenylated by addition of a farnesyl group to Cys(433). Our data suggest that phosphorylation of LKB1 at Ser(431) does not affect farnesylation and that farnesylation does not affect phosphorylation at Ser(431). Phosphorylation of LKB1 at Ser(431) did not alter the activity of LKB1 to phosphorylate itself or the tumor suppressor protein p53 or alter the amount of LKB1 associated with cell membranes. The reintroduction of wild-type LKB1 into a cancer cell line that lacks LKB1 suppressed growth, but mutants of LKB1 in which Ser(431) was mutated to Ala to prevent phosphorylation of LKB1 were ineffective in inhibiting growth. In contrast, a mutant of LKB1 that cannot be prenylated was still able to suppress the growth of cells.  相似文献   

10.
人LKB1(Liver Kinase B1,或Serine-Threonine Kinase 11,STK11)基因的胚系失活突变可导致癌症易感病皮杰氏综合征(Peutz-Jeghers syndrome,PJS),该病患者多发错构瘤息肉且患癌症风险增加。LKB1基因的体细胞突变还广泛地存在于众多类型的恶性肿瘤中,如肺癌、结肠癌和乳腺癌等,因此,LKB1被普遍认为是抑癌基因。LKB1基因的编码产物LKB1是一种丝氨酸/苏氨酸激酶,调节多种细胞生理病理过程。虽然LKB1的抑癌机制尚不完全清楚,但现有的研究表明,对细胞生长增殖、能量代谢和细胞极性等的调控是其抑制肿瘤发生和发展的重要方面。本文就目前已知的LKB1的抑癌机制作一综述。  相似文献   

11.
12.
13.
LKB1 (also known as STK11) is a recently identified tumor suppressor gene whose mutation can lead to Peutz-Jeghers syndrome, which is characterized by gastrointestinal polyps and cancers of different organ systems. Approximately 30% of sporadic breast cancer samples express low levels of LKB1. This suggests that the LKB1 gene may be related to the tumorigenesis of breast cancer. We reintroduced LKB1 into MDA-MB-435 breast cancer cells that lack the LKB1 gene to investigate how overexpression of LKB1 affects tumor invasiveness and metastasis. Overexpression of the LKB1 protein in breast cancer cells resulted in significant inhibition of in vitro invasion. In vivo, LKB1 expression reduced tumor growth in the mammary fat pad, microvessel density, and lung metastasis. LKB1 overexpression was associated with down-regulation of matrix metalloproteinase-2, matrix metalloproteinase-9, vascular endothelial growth factor, and basic fibroblast growth factor mRNA and protein levels. Overexpression of the LKB1 protein in human breast cancer is significantly associated with a decrease in microvessel density. Our results indicate that LKB1 plays a negative regulatory role in human breast cancer, a finding that may lead to a new therapeutic strategy.  相似文献   

14.
Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27(Kip1), is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein-AMP-activated protein kinase (LKB1-AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27(T198A)) is sufficient to induce autophagy. Under stress conditions that activate the LKB1-AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1-AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.  相似文献   

15.
The serine/threonine protein kinase LKB1 is a tumor suppressor gene mutated in Peutz-Jeghers syndrome patients. The mutations are found also in several types of sporadic cancer. Although LKB1 is implicated in suppression of cell growth and metastasis, the detailed mechanisms have not yet been elucidated. In this study, we investigated the effect of LKB1 on cell motility, whose acquisition occurs in early metastasis. The knockdown of LKB1 enhanced cell migration and PAK1 activity in human colon cancer HCT116 cells, whereas forced expression of LKB1 in Lkb1-null mouse embryonic fibroblasts suppressed PAK1 activity and PAK1-mediated cell migration simultaneously. Notably, LKB1 directly phosphorylated PAK1 at Thr109 in the p21-binding domain in vitro. The phosphomimetic T109E mutant showed significantly lower protein kinase activity than wild-type PAK1, suggesting that the phosphorylation at Thr109 by LKB1 was responsible for suppression of PAK1. Consistently, the nonphosphorylatable T109A mutant was resistant to suppression by LKB1. Furthermore, we found that PAK1 was activated in the hepatocellular carcinomas and the precancerous liver lesions of Lkb1(+/−) mice. Taken together, these results suggest that PAK1 is a direct downstream target of LKB1 and plays an essential role in LKB1-induced suppression of cell migration.  相似文献   

16.
The LKB1 tumor suppressor kinase in human disease   总被引:1,自引:0,他引:1  
Inactivating germline mutations in the LKB1 gene underlie Peutz-Jeghers syndrome characterized by hamartomatous polyps and an elevated risk for cancer. Recent studies suggest the involvement of LKB1 also in more common human disorders including diabetes and in a significant fraction of lung adenocarcinomas. These observations have increased the interest towards signaling pathways of this tumor suppressor kinase. The recent breakthroughs in understanding the molecular functions of the LKB1 indicate its contribution as a regulator of cell polarity, energy metabolism and cell proliferation. Here we review how the substrates and cellular functions of LKB1 may be linked to Peutz-Jeghers syndrome and other diseases, and discuss how some of the molecular changes associated with altered LKB1 signaling might be used in therapeutic approaches.  相似文献   

17.
18.
LKB1, a tumor suppressor gene mutated in the Peutz-Jeghers syndrome, encodes a serine/threonine protein kinase. Recent biochemical studies have shown that LKB1 activates 14 AMP-activated protein kinase-related kinases including MARKs (microtubule-associated protein/microtubule affinity-regulating kinases) that regulate microtubule dynamics. Here we show in vitro that LKB1 phosphorylates and activates MARK2, which in turn phosphorylates microtubule-associated protein Tau at the KXGS motif and suppresses tubulin polymerization. In cells, forced expression of LKB1 suppresses microtubule regrowth, whereas LKB1 knockdown accelerates it. We further show that the phosphorylation of Tau by the LKB1-MARK signaling triggers proteasome-mediated degradation of Tau. These results indicate that LKB1 is involved in the regulation of microtubule dynamics through the activation of MARKs.  相似文献   

19.
Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance.  相似文献   

20.
The LKB1 gene encodes a serine/threonine kinase that is mutated in the Peutz-Jeghers cancer syndrome. LKB1 is homologous to the Par-4 polarity genes in C. elegans and D. melanogaster. We have previously reported the identification and characterization of an LKB1-specific adaptor protein, STRAD, which activates LKB1 and translocates it from nucleus to cytoplasm. We have now constructed intestinal epithelial cell lines in which inducible STRAD activates LKB1. Upon LKB1 activation, single cells rapidly remodel their actin cytoskeleton to form an apical brush border. The junctional proteins ZO-1 and p120 redistribute in a dotted circle peripheral to the brush border, in the absence of cell-cell contacts. Apical and basolateral markers sort to their respective membrane domains. We conclude that LKB1 can induce complete polarity in intestinal epithelial cells. In contrast to current thinking on polarization of simple epithelia, these cells can fully polarize in the absence of junctional cell-cell contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号