首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Thrombin and certain prostaglandins are both capable of stimulating the proliferation of cultured cells. Since thrombin stimulates the release and metabolism of arachidonic acid, the precursor of prostaglandins, we examined the relationship between this release and metabolism and the stimulation of cell division in cultured fibroblasts. We also examined the role of prostaglandin synthesis in thrombin-stimulated phosphatidylinositol synthesis. The data in this report demonstrate that the release and metabolism of arachidonic acid are not necessary for thrombin-stimulated cell division. The presence of a low concentration of chymotrypsin prevented thrombin-stimulated arachidonic acid release and metabolism without affecting the stimulation of cell division. Furthermore, thrombin-stimulated cell division occurred in the presence of indomethacin concentrations that prevented cyclooxygenase-mediated metabolism of arachidonic acid. The following experiments showed that thrombin-stimulated phosphatidylinositol synthesis was brought about by a cyclooxygenase-mediated metabolite(s) of arachidonic acid. Indomethacin inhibited the cyclooxygenase-mediated metabolism of arachidonic acid without affecting the thrombin-stimulated release of arachidonic acid. Indomethacin also inhibited thrombin-stimulated phosphatidylinositol synthesis. The dose dependence of this inhibition paralleled the inhibition by indomethacin of cyclooxygenase-mediated metabolism of arachidonic acid. In addition, prostaglandin F2 alpha stimulated phosphatidylinositol synthesis in the presence of indomethacin concentrations which prevented thrombin-stimulated phosphatidylinositol synthesis.  相似文献   

2.
Inositol phospholipid degradation and release of phospholipid-bound arachidonic acid was induced in intact peritoneal macrophages by exposure to phorbol myristate acetate (PMA) or zymosan particles. PMA, known to activate protein kinase C, selectively enhanced the deacylation of phosphatidylinositol (i.e., degradation by phospholipase A), while zymosan particles enhanced degradation via both phospholipase A and inositol lipid phosphodiesterase (phospholipase C). The release of arachidonic acid was found to correlate with the degradation of phosphatidylinositol by the phospholipase A pathway and could be dissociated from the phospholipase C-catalyzed cleavage of inositol phospholipids in several experimental situations: (i) when PMA was the stimulus, (ii) by the difference in Ca2+ dependence between the two enzymatic processes when zymosan was the stimulus and (iii) by the parallel inhibition by chlorpromazine of the phospholipase A pathway and arachidonic acid release, but not inositol phospholipid phosphodiesterase. In addition, phloretin, a reported inhibitor of protein kinase C, was found to inhibit arachidonic acid release and the deacylation of phosphatidylinositol. The results are consistent with a model in which arachidonic acid release is mediated by phospholipase(s) A and in which PMA or the phosphodiesterase-catalyzed degradation of phosphoinositides causes activation of the phospholipase A pathway via protein kinase C.  相似文献   

3.
Lindane stimulates the release of both glycerophosphoinositol and arachidonic acid from phospholipids in rat renal proximal tubular cell cultures. When lindane was added to the culture medium, a correlation between the time-course profiles of glycerophosphoinositol and arachidonate release was found. This suggests a pathway in which phosphatidylinositol is not directly broken down by phospholipase C, but can instead be broken down to glycerophosphoinositol and arachidonic acid by phospholipase A enzymes. Therefore, a mechanism of action of lindane is through its effect on glycerophosphoinositol and arachidonic acid metabolism.  相似文献   

4.
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.  相似文献   

5.
The effect of nerve growth factor on the metabolism of arachidonic acid and the hydrolysis of phosphatidylinositol in PC12 cells was examined. Addition of nerve growth factor to PC12 cells isotopically labeled with [3H]arachidonic acid caused an increased release of radioactivity. In a similar manner, treatment of PC12 cells prelabeled with [3H]inositol increased inositol monophosphate accumulation in the presence of LiCl. Stimulation of [3H]arachidonic acid release by nerve growth factor was concentration dependent, attaining a maximum at 0.5 nM. Concentrations of nerve growth factor above 0.5 nM caused less than maximal stimulation. In contrast, nerve growth factor-stimulated accumulation of [3H]inositol monophosphate exhibited a sigmoidal dose-response curve with an apparent maximum at 8 nM. Increased accumulation of [3H]inositol monophosphate could be detected as early as 60 s after nerve growth factor addition, whereas nerve growth factor-stimulated release of [3H]arachidonic acid was not observed until 5 min after nerve growth factor treatment. The nerve growth factor-stimulated release of [3H]arachidonic acid was independent of extracellular calcium concentration. Increased [3H]inositol monophosphate accumulation elicited by nerve growth factor was dependent on the presence of extracellular calcium. These results suggest that the increased metabolism of arachidonic acid and the enhanced hydrolysis of phosphatidylinositol are separately regulated by nerve growth factor.  相似文献   

6.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

7.
Arachidonic acid release is an important regulatory component of uterine contraction and parturition, and previous studies showed that lindane stimulates arachidonic acid release from myometrium. The present study partially characterized the enzyme activity responsible for lindane-induced arachidonic acid release in myometrial cells. Lindane released arachidonic acid from cultured rat myometrial cells in concentration- and time-dependent manners. This release was primarily from phosphatidylcholine and phosphatidylinositol, and was independent of intracellular and extracellular calcium. In cells prelabeled with [3H]arachidonic acid, 85% of radiolabel was recovered as free arachidonate and only 5% was recovered as eicosanoids. Pretreatment with the antioxidants Cu, Zn-superoxide dismutase, alpha-tocopherol or Trolox did not significantly modify lindane-induced arachidonic acid release. Pretreatment of cells with the phosphatidylcholine-specific phospholipase C inhibitor D609, phosphatidylinositol-specific phospholipase C inhibitor ET-18-OCH3, or an interrupter of the phospholipase D pathway (ethanol) did not suppress lindane-induced arachidonic acid release. Although these results are consistent with calcium-independent phospholipase A2 activation by lindane, the calcium-independent phospholipase A2 inhibitor bromoenol lactone failed to inhibit lindane-induced arachidonic acid release in myometrial cells, even though bromoenol lactone effectively blocked arachidonic acid release in neutrophils. These results suggest that myometrial cells express a novel, previously unidentified phospholipase that is arachidonate-specific, calcium-independent, insensitive to bromoenol lactone, insensitive to reactive oxygen species activation, shows substrate preference for phosphatidylcholine and phosphatidylinositol, and is stimulated by lindane. Moreover, the data show that the overwhelming majority of arachidonic acid released remains as arachidonate, but that lindane does not significantly inhibit metabolism of arachidonate to eicosanoids.  相似文献   

8.
alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.  相似文献   

9.
[(3)H]-Arachidonic acid-labelled rat T lymphocytes released radioactivity extracellularly when stimulated by the calcium ionophore A23187 or by monoclonal antibodies to some cell surface structures (CD2, CD5, CD11a, CD18, CD54, T-cell receptor) but not to others (CD49d, CD62L); release was greater with the calcium ionophore. Almost all of the radioactivity released from anti-CD2-stimulated lymphocytes was recovered in the free fatty acid fraction, whereas only about 50 per cent of that released after A23187 stimulation was recovered in this fraction. A23187 stimulation resulted in release of arachidonic acid from a variety of phospholipids (phosphatidylinositol, phosphatidylcholine and perhaps phosphatidylethanolamine), while the monoclonal antibody stimulation released arachidonic acid from phosphatidylinositol and perhaps phosphatidylcholine. Unstimulated lymphocytes released a range of fatty acids extracellularly, with palmitic acid accounting for 35-40 per cent and arachidonic acid for 5 per cent of released fatty acid. Stimulation of lymphocytes with either anti-CD2 or A23187 increased total fatty acid release 1.5- to 1.8-fold. In both cases palmitic acid remained the most predominant fatty acid released but the contribution of arachidonic acid increased. The type of lipid fed to the rats significantly influenced the amount and type of fatty acid released. Fish oil feeding significantly reduced extracellular fatty acid release by stimulated lymphocytes.  相似文献   

10.
The addition of the Ca2+ ionophore A23187 to rabbit neutrophils stimulated [14C]arachidonic acid incorporation into phosphatidylinositol and lysosomal enzyme secretion. A significant increase in phosphatidylinositol labelling was observed after a 2 min exposure to 0.1 microM-ionophore A23187. Maximum increases in rate of labelling were obtained with 1 microM-ionophore A23187 within 1 min, declining to basal rates after 15 min. Similarly, maximum rate of enzyme release occurred during the first 2 min of exposure to ionophore and release was essentially complete by 15 min. Threshold and peak ionophore A23187 concentrations for stimulating both processes were identical. In contrast with the specificity of phosphatidylinositol labelling induced by 1 microM-ionophore A23187 in the absence of cytochalasin B, ionophore also significantly stimulated labelling of phosphatidylserine and phosphatidylethanolamine in the presence of cytochalasin B. With a threshold ionophore concentration (0.1 microM), the enhanced incorporation of arachidonate was relatively specific for phosphatidylinositol in cytochalasin-treated cells. Ionophore A23187 did not accelerate labelling of phosphatidylinositol by [14C]acetate or [14C]glycerol, indicating that ionophore A23187 does not stimulate phosphatidylinositol synthesis de novo, although it did promote [14C]palmitate and [32P]Pi incorporation into neutrophil phosphatidylinositol. However, the increase in phosphatidylinositol labelling with these latter precursors was generally slower in onset and much more modest in magnitude than that observed with arachidonic acid. These results support the hypothesis that a Ca2+-dependent phospholipase, which acts on the arachidonate moiety of phosphatidylinositol, is responsible for initiating at least certain of the membrane events coupled to the release of secretory product from the neutrophil.  相似文献   

11.
Previous studies have reported an increased turnover of phospholipid in isolated islets of Langerhans in response to raised glucose concentrations. The present investigation was thus undertaken to determine the nature of any phospholipases that may be implicated in this phenomenon by employing various radiolabelled exogenous phospholipids. Hydrolysis of 1-acyl-2-[14C]arachidonoylglycerophosphoinositol by a sonicated preparation of islets optimally released radiolabelled lysophosphatidylinositol, arachidonic acid and 1,2-diacylglycerol at pH 5,7 and 9 respectively. This indicates the presence of a phospholipase A1 and a phospholipase C. However, the lack of any labelled lysophosphatidylinositol production when 2-acyl-1-[14C]stearoylglycerophosphoinositol was hydrolysed argues against a role for phospholipase A2 in the release of arachidonic acid. Phospholipase C activity as measured by phosphatidyl-myo-[3H]inositol hydrolysis was optimal around pH8, required Ca2+ for activity and was predominantly cytosolic in origin. The time course of phosphatidylinositol hydrolysis at pH 6 indicated a precursor-product relationship for 1,2-diacylglycerol and arachidonic acid respectively. The release of these two products when phosphatidylinositol was hydrolysed by either islet or acinar tissue was similar. However, phospholipase A1 activity was 20-fold higher in acinar tissue. Substrate specificity studies with islet tissue revealed that arachidonic acid release from phosphatidylethanolamine and phosphatidylcholine was only 8% and 2.5% respectively of that from phosphatidylinositol. Diacylglycerol lipase was also demonstrated in islet tissue being predominantly membrane bound and stimulated by Ca2+. The availability of non-esterified arachidonic acid in islet cells could be regulated by changes in the activity of a phosphatidylinositol-specific phospholipase C acting in concert with a diacylglycerol lipase.  相似文献   

12.
Cultured porcine aortic endothelial cells were conditioned in normal (5.2 mM) and elevated (15.6 mM) glucose, prelabeled with [14C]arachidonic acid and stimulated with ionophore A23187. Elevated glucose cultures released less radiolabeled products and less [14C]arachidonic acid. Analysis of cellular lipids revealed that elevated glucose reduced net loss of radiolabel from diacylphosphatidylethanolamine, did not affect early phosphatidylinositol hydrolysis, and increased net loss from diacylphosphatidylcholine and alkenylacylphosphatidylethanolamine. Uptake of radiolabel upon stimulation was examined to measure the role of reacylation on the diminished net release of radiolabel in elevated glucose cultures. Enhanced acylation of [3H]arachidonic acid into cellular lipids, especially PI, was observed in stimulated and resting cultures with elevated glucose. Further, pretreatment of the cultures with an acyltransferase inhibitor, thimerosal, prior to A23187 stimulation in radiolabeled cultures, abolished the effects of glucose on eicosanoid and arachidonic acid release. Differences in the ionophore-induced net loss of radiolabel from diacylphosphatidylethanolamine and phosphatidylinositol of the two glucose treatments were diminished by thimerosal exposure, while net loss of radiolabel from diacylphosphatidylcholine and alkenylacylphosphatidylethanolamine were unaffected. The data indicate that elevated glucose alters deacylation and enhances reacylation of arachidonic acid into endothelial cells and particularly into phosphatidylinositol. Enhanced reacylation may explain some of the altered lipid pathways that have been observed in experiments that elevate glucose concentrations or involve diabetes.  相似文献   

13.
A high level of arachidonic acid release from [2-14C]arachidonylphosphatidylinositol (PI) was observed at neutral pH (6.0-7.0) in the presence of purified plasma membranes of guinea pig peritoneal macrophages. This activity was at least 10-fold higher than that with arachidonylphosphatidylcholine (PC) or phosphatidylethanolamine (PE) as substrate. The accumulation of [14C]diacylglycerol and [14C]phosphatidic acid was not detected at any time, and arachidonic acid release from [14C]arachidonyldiacylglycerol was not detectable either. The data suggest that arachidonic acid release from PI may not occur via the phospholipase C pathway. In this paper, we demonstrate the possibility that arachidonic acid release from PI at neutral pH in the macrophage plasma membrane is dependent on the action of phospholipase A2 (EC 3.1.1.4) -like activity. The maximum arachidonic acid release was dependent upon both pH and substrate. Particularly, the activity of arachidonic acid release from PI at neutral pH was very high compared with that from PC or PE. We suggest that phosphatidylinositol phospholipase A2 (EC 3.1.1.52) may play an important role in providing arachidonic acid for subsequent metabolic activity in the macrophages.  相似文献   

14.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

15.
1,2-Dioctanoyl-sn-glycerol (2-50 microM) was found, like phorbol myristate acetate (greater than or equal to 3 nM) to stimulate phospholipase A-type cleavage of phosphatidylinositol and the release of arachidonic acid from macrophage phospholipids. The 1,3 isomer of dioctanoylglycerol was inactive, whereas racemic 1,2-dioctanoylglycerol was half as potent as the 1,2-sn enantiomer. Dioctanoylglycerol-induced deacylation of phosphatidylinositol was only partly dependent on extracellular calcium but was more severely inhibited by depletion of intracellular calcium. Chlorpromazine inhibited the deacylation of phosphatidylinositol, whereas inhibitors of cyclo-oxygenase and lipoxygenase were ineffective. Since both phorbol myristate acetate and 1,2-dioctanoyl-sn-glycerol are known to activate protein kinase C, the results suggest that this kinase is involved in the sequence of events leading to release of arachidonic acid in macrophages.  相似文献   

16.
Chromaffin cells from bovine adrenal medulla secrete catecholamines on stimulation with acetylcholine. In addition to the activation of the phosphatidylinositol cycle, arachidonic acid is generated, which was thought to be the result of phospholipase A2 activation. We have demonstrated in isolated plasma membranes of these cells that arachidonic acid is generated by a two-step reaction of diacylglycerol and monoacylglycerol lipase splitting diacylglycerol, which originates from the action of phospholipase C on phosphatidylinositols. No phospholipase A2 activity could be detected in plasma membranes so far. External addition of arachidonic acid increases the release in the absence and in the presence of agonist. Inhibition of the diacylglycerol lipase by RHC 80267 suppresses the catecholamine release, which is restored on addition of arachidonic acid. This effect, however, is reversed by lipoxygenase inhibitors, indicating that it is not arachidonic acid itself, but one of its lipoxygenase products, that is essential for inducing exocytosis.  相似文献   

17.
The effect of prostaglandin E2 (PGE2), forskolin, and dibutyryl cAMP on arachidonic acid release, inositol phospholipid metabolism, and Ca2+ mobilization was investigated. The chemotactic tripeptide (formylmethionyl-leucyl-phenylalanine (fMLP))-induced arachidonic acid release in neutrophils was significantly inhibited by PGE2, forskolin, and dibutyryl cAMP. Among them, PGE2 was found to be the most potent inhibitor. However, when neutrophils were stimulated by Ca2+ ionophore A23187, such inhibitory effect by these agents was less marked. PGE2 also suppressed the enhanced incorporation of [32P]Pi into phosphatidic acid (PA) and phosphatidylinositol in a dose-dependent manner in fMLP-stimulated neutrophils. Also in this case, Ca2+ ionophore-induced alterations were hardly inhibited by PGE2. As well, PGE2 inhibited the fMLP-induced decrease of [3H]arachidonic acid in phosphatidylcholine and phosphatidylinositol and the increase in PA very significantly. But the inhibitory effect by PGE2 was found to be weak in Ca2+ ionophore-stimulated neutrophils. These results suggest that a certain step from receptor activation to Ca2+ influx is mainly inhibited by PGE2. Concerning polyphosphoinositide breakdown, PGE2 did not affect the fMLP-induced decrease of [32P]phosphatidylinositol 4,5-bisphosphate which occurred within 10 s but inhibited the subsequent loss of [32P]phosphatidylinositol 4-phosphate and [32P]phosphatidylinositol, suggesting that the compensatory resynthesis of phosphatidylinositol 4,5-bisphosphate was inhibited. On the other hand, fMLP-induced diacylglycerol formation was suppressed for the early period until 1 min, but with further incubation, diacylglycerol formation was rather accelerated by PGE2. Moreover, the inhibition of PA formation by PGE2 became evident after a 30-s time lag, suggesting that the conversion of diacylglycerol to PA is inhibited by PGE2. The formation of water-soluble products of inositol phospholipid degradation by phospholipase C, such as inositol phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate, was also suppressed by PGE2 treatment. However, the inhibition was not so marked as that of arachidonic acid release and PA formation. Thus, PGE2 appeared to inhibit not only initial events such as polyphosphoinositide breakdown but also turnover of inositol phospholipids. PGE2, forskolin, and dibutyryl cAMP did not block the rapid elevation of intracellular Ca2+ which was observed within 10 s in fMLP-stimulated neutrophils. However, subsequent increase in intracellular Ca2+ which was caused from 10 s to 3 min after stimulation was inhibited by PGE2, forskolin, and dibutyryl cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To determine the origins of the arachidonic acid released post-mortem in brain tissue, [3H]arachidonic acid was injected by the intracerebro-ventricular route and radioactivity monitored in complex lipids and free arachidonic acid at various times after decapitation. The specific activity of the released arachidonic acid was close to that in the total phospholipid fraction and much lower than that of the neutral lipids. The phospholipid with the closest specific activity to the free arachidonic acid recovered at the end of the post-mortem period was phosphatidylinositol. Phosphatidylcholine showed a small but significant decrease in radioactivity post-mortem and could contribute 37% of the arachidonic acid released to the free fatty acid fraction. Arachidonic acid released in rat forebrain after decapitation thus comes from a mixture of phospholipids with phosphatidylinositol and phosphatidylcholine being the major source. Phosphatidylserine and phosphatidic acid did not make important contributions to the free arachidonic acid. In the microsomal fraction, the specific activity of the free arachidonic acid was very close to that in phosphatidylinositol.  相似文献   

19.
Transfer of arachidonic acid between phospholipids in rat liver microsomes   总被引:6,自引:0,他引:6  
Phosphatidylcholine and phosphatidylinositol labelled with radioactive oleic, arachidonic or linoleic acids in the 2-acyl position were prepared. Rat liver microsomes were incubated with either lysophosphatidylcholine or lyso-phosphatidylinositol and the opposite 2-acyl-labelled phospholipid, and were found to catalyse a transfer of fatty acids between the two phospholipids. This was shown to be a direct Co-enzyme A-mediated transfer that does not involve a free fatty acid intermediate (i.e. it is independent of phospholipase A2 activity). Arachidonoyl transfer took place at about four times the rate of linoleoyl transfer; oleoyl transfer was not detectable. The role of direct arachidonoyl transfer to phosphatidylinositol in the controlled release of arachidonic acid for prostaglandin synthesis is discussed.  相似文献   

20.
When synaptosomes were depolarized in the presence of Ca2+, or when Ca2+ was added to synaptosomes pretreated with Ca2+ ionophore (A23187), free arachidonic acid was clearly increased within synaptosomes, and at the same time an efflux of gamma-aminobutyric acid from synaptosomes was observed. Moreover, when synaptosomes labelled with [14C]arachidonic acid were depolarized in the presence of Ca2+, there was a significant decrease in the radioactivity of the fatty acid of phosphatidylinositol and phosphatidylcholine. Exogenously added arachidonic acid, but not other fatty acids, stimulated the efflux of gamma-aminobutyric acid in the absence of Ca2+. These observations suggest that the release of arachidonic acid from phospholipids is an intrinsic part of the biochemical mechanism that modulates the gamma-aminobutyric acid efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号