首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accessory cell activity of spleen cells from M-MuLV neonatally injected (tolerant) mice was studied to evaluate their ability to take part in in vitro CTL generation against tumor-associated antigens induced by M-MSV. In contrast with accessory cell activity in normal spleen cells, spleen cells from M-MuLV-tolerant mice are unable to reconstitute the in vitro virus-specific CTL generation of M-MSV immune, Ia-depleted spleen cells. A selective defect seems to characterize M-MuLV-tolerant mice as their spleens constitute a good source of accessory cells for alloantigen CTL generation.  相似文献   

2.
Moloney leukemia virus-specific cytotoxic T lymphocytes (CTL), generated by secondary in vitro stimulation of spleen cells with syngeneic virus-infected cells, frequently lysed not only syngeneic virus-infected cells, but also noninfected allogeneic target cells. This phenomenon was studied with B6(H-2 b ) responder cells and a series of H-2K b -mutant responder cells. Thus, B6 Moloney-specific CTL lysed noninfected K b -mutant cells, but not B6 cells, whereas K b -mutant Moloney-specific CTL lysed noninfected B6 cells and not noninfected cells of the same mutant. Cold-target-inhibition studies showed that the CTL reactions against different allogeneic cells were mediated by different subpopulations of virus-specific CTL: lysis of allogeneic target cells was fully inhibited only by the same allogeneic and by syngeneic virus-infected cells, but not by another allogeneic cell, also lysed by the same effector-cell population. Lysis of syngeneic virus-infected cells could not be inhibited by allogeneic target cells. These data imply that a minority of virus-specific CTL shows cross-reactivity with a given allogeneic target cell. It is concluded that limited amino acid substitutions in the Kb molecule alter the repertoire of Moloney virus-specific CTL, as reflected in alloreactive CTL populations, even though the virus-specific CTL response. of B6 and all K b mutants is mainly Db-restricted. Thus, the development of tolerance to self class-I major histocompatibility complex (MHC) molecules affects the repertoire of self-restricted cytotoxic T cells.  相似文献   

3.
Regression of Moloney-murine sarcoma virus- (M-MSV) induced sarcomas in normal adult mice is accompanied by generation of virus-specific cytotoxic T lymphocytes (CTL). However, when neonatal mice that were injected with Moloney-murine leukemia virus (M-MuLV carrier) were subsequently challenged as adults with M-MSV, the sarcomas did not regress nor did they generate CTL. This failure to produce CTL cannot be ascribed to nonspecific immunodepressive effects or to suppressor cell generation since M-MuLV carrier mice exhibit normal reactivity after allogeneic cell stimulation. Moreover, addition of M-MuLV-infected cells as the third party to cultures does not reduce activity of CTL from M-MSV immune mice. Since M-MSV and M-MuLV possess common antigens, the observed unresponsiveness was considered in relationship to induction of a T lymphocyte tolerance, which may follow introduction of foreign antigens at an early stage of development. In fact, it was observed that as early as 10 days after injection, thymus, lymph node, and spleen from M-MuLV carrier mice express virus-induced cell-surface antigens that not only are targets for M-MSV-immune CTL, but also induce in vitro a strong specific cytotoxic response. In addition, a cold target inhibition assay disclosed that the same antigens are shared by both M-MuLV infected and leukemia cells, even though they are less expressed on the surface of the former. The finding that the cytotoxicity of alloreactive lymphocytes from M-MuLV carrier mice is reduced after preincubation with M-MSV immune CTL confirms that virus infection does not bring about functional inactivation of lymphocytes. Finally, it was observed that virus antigen presence on lymphocytes from M-MuLV neonatally injected mice is closely related to subsequent leukemia development.  相似文献   

4.
The antigenic requirements for in vitro proliferation of several cloned continuous lines of H-2-restricted influenza virus-specific cytotoxic T lymphocytes (CTL) has been examined. The cloned CTL lines were established from individual splenic CTL precursors obtained from A/JAPAN/305/57 (H2N2)-immune F1 (C57BL/6 X BALB/c) donors. The lines were isolated (by limiting dilution in liquid culture) and expanded in the presence of A/JAPAN/305/57-infected irradiated syngeneic (F1) spleen cells and T cell growth factor (TCGF) of rat spleen origin. Optimal proliferation (and long-term in vitro cultivation) of these H-2-restricted CTL lines required both specific antigenic stimulation in the form of virus-infected syngeneic spleen cells and an exogenous source of TCGF. In addition, the antigenic requirements for proliferation of these lines directly reflected the pattern of H-2-restricted influenza virus-specific recognition at the level of target cell recognition and lysis.  相似文献   

5.
The mechanism for the induction of cytotoxic T cells specific for tumor-associated antigens was studied by using fractionated responder T cells, tumor cells, and accessory cells in vitro. The tumor-specific cytotoxic T cells were induced by culturing immunized spleen cells with the tumor cells in vitro for 5 days. Nylon-column-purified T cells alone did not induce cytotoxic T cells upon culture with tumor cells, but the addition of normal spleen cells as accessory cells did successfully induce the cytotoxic T cells, suggesting that the presence of accessory cells is required for the activation of tumor-specific cytotoxic T cells in vitro. The accessory function was associated with spleen cell populations adhering to a plastic dish, a Sephadex G-10 column or a nylon wool column, and was sensitive to anti-Ia serum and C treatment, but was resistant to anti-Ig serum or anti-Thy 1 serum and C treatment, suggesting that the accessory cells are Ia-positive macrophages. Not only syngeneic but also allogeneic macrophages had the accessory function and the allogeneic macrophages were also Ia positive. These results suggest that Ia-positive macrophages play a crucial role in the induction of tumor-specific cytotoxic T cells in vitro. The possible role of Ia-positive accessory cells in the induction of tumor-specific cytotoxic T cells is discussed from the standpoint of cellular interactions.  相似文献   

6.
The susceptibility of cytotoxic effector lymphocytes and their induction to in vivo or in vitro treatment with rabbit anti-neutral glycolipid ganglio-N-tetraosylceramide (anti-ASGM1) antiserum was investigated. Intravenous injection of anti-ASGM1 antiserum eliminated measurable natural killer (NK) cell activity in spleen cells of mice infected for 5 days with Vaccinia virus, or for 8 days with lymphocytic choriomeningitis virus (LCMV) if injected 24 hr prior to testing. In addition, this treatment lowered measurable virus-specific cytotoxic T cell activity by 60 to 95%. Virus-specific cytotoxic T cell and NK cell activity generated during a primary infection in vivo was also sensitive to treatment in vitro with anti-ASGM1 antiserum (1/300 to 1/600 dilution) plus rabbit complement at a dilution of 1/15 (20 to 50% cell death, more than 30-fold decrease of cytotoxic activity); in vitro treatment with rabbit complement alone often enhanced NK and cytotoxic T cell activity slightly. In vivo treatment with anti-ASGM1 before primary immunization decreased generation of primary CTL only if high doses of anti-ASGM1 antiserum were injected twice. Antiviral T cells generated during secondary stimulation in vitro and alloreactive cytotoxic T cells from a mixed lymphocyte culture were resistant to treatment in vitro with anti-ASGM1 plus complement at the end of the culture period. Treatment in vitro of in vivo-primed responder spleen cells with anti-ASGM1 plus complement before their addition to a secondary restimulation culture resulted in complete inhibition of a secondary antiviral cytotoxic T cell response. In vivo treatment with anti-ASGM1 24 hr before their spleen cells were harvested and restimulated in vitro significantly reduced the virus-specific T cell activity of mice that had been immunized with virus several weeks previously. A cloned T cell line exclusively exerting NK-like activity was resistant, and two cloned virus-specific cytotoxic T cell lines were susceptible to treatment with anti-ASGM1 plus complement in vitro. These results caution the general use of rabbit anti-ASGM1 as a marker to distinguish NK from CTL cells; they indicate a possible relationship between NK and CTL cells and suggest that in vitro culture of lymphocytes may alter or select the cell surface expression or availability of the ASGM1 marker(s).  相似文献   

7.
In order to clarify the effect of recombinant human tumor necrosis factor (rHu-TNF) on the antitumor T cell immune response, we examined the effect of rHu-TNF on the generation of cytotoxic T cells (CTL) against syngeneic tumor cells. Spleen cells from X5563 plasmacytoma-transplanted mice were stimulated in vitro with mitomycin C-treated X5563 cells in the presence or absence of rHu-TNF. The generation of CTL was augmented in a dose-dependent manner by the addition of rHu-TNF. The augmenting effect of rHu-TNF was more marked when indomethacin was added to the culture. The augmenting effect was observed only when rHu-TNF was added at the early stage of the generation of CTL. The cell surface phenotype of CTL generated was L3T4- and Lyt2+. The augmentation was shown not only by the chromium-51 release assay but also by the Winn assay. As to the specificity, the augmentation of CTL generation was observed by the addition of rHu-TNF when responder-primed spleen cells were stimulated with the tumor cells in vitro. On the other hand, augmentation was not observed when responder spleen cells were not stimulated with the tumor cells in vitro, or when responder spleen cells were obtained from normal mice. The CTL generated was not cytotoxic against other tumor cells of the same haplotype. Thus, rHu-TNF augmented the generation of CTL against syngeneic tumor cells in an antigen-specific manner. The in vivo effect of rHu-TNF was examined by administering rHu-TNF into X5563-bearing mice. The spleen cells of rHu-TNF-injected mice generated a much higher CTL activity against X5563 cells in vitro than did the spleen cells of uninjected mice. From these results, a possibility can be considered that in some cases, rHu-TNF may exert its antitumor activity by stimulating the immune system.  相似文献   

8.
In the generation of allogeneic, hapten-modified and virus-specific cytotoxic T cell (CTL) responses there is usually a requirement for T-T interaction between the T helper cell (TH) and the precursor CTL (CTL). We have investigated the role of a TH signal in the induction of a xenogeneic mouse antihuman CTL response by using membranes and liposomes bearing the xenogeneic antigen to stimulate primed responders. The TH signal can be achieved by either an Ia-restricted, L3T4+ DR-specific T cell or by the addition of nonspecific T helper factors(s). This signal is delivered to an Lyt-2+, L3T4-DR-specific CTL to generate active xenogeneic (xeno-) CTL. The roles of the T cell accessory molecules L3T4, Lyt-2, and LFA-1 in the generation of and target cell lysis by xeno-CTL are investigated.  相似文献   

9.
Alloreactive cytotoxic T lymphocytes (CTL) distinct from virus-specific CTL and activated natural killer (NK) cells were generated during acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6J mice. The alloreactive CTL shared similar antigenic markers (Thy-1.2+, Lyt-2.2+, and asialo GM1-) with the virus-specific CTL that appeared at the same time 7 days postinfection, but had different target specificities. These alloreactive CTL lysed allogeneic but not syngeneic or xenogeneic targets. These were distinct from activated NK cells, which lysed all target cell types, peaked 3 days postinfection, and had a phenotype of asialo GM1+, Thy-1 +/-, Lyt-2.2-. Cold target competition studies indicated that there were several subsets of alloreactive T cells with distinct specificities, and that these alloreactive T cells were not subsets of the virus-specific T cells. Similar types of alloreactive CTL were induced at much lower levels in C3H/St mice. This may indicate that the generation of this "aberrant" T cell activity is under genetic control. Hence, the LCMV infection of C57BL/6J mice induces several cytotoxic effector populations including alloreactive CTL, activated NK cells, and virus-specific CTL. Virus infections therefore have the ability not only to polyclonally stimulate B cells, as previously described, but also to stimulate CTL.  相似文献   

10.
Peritoneal cells (PEC) from mice injected ip with Corynebacterium parvum (CP) showed greatly enhanced suppressive activity on the growth of syngeneic tumor cells and on the generation of alloreactive cytotoxic T lymphocytes (CTL) in vitro. On the other hand, CP-activated PEC exhibited increased immunostimulatory (accessory or A cell) activity as measured by the restoration of the CTL response of nonadherent spleen cells. After fractionation of the CP-activated PEC according to cell size by velocity sedimentation, the mutually antagonistic A cell and immunosuppressive activities were clearly separated and found to be associated with functionally distinct subpopulations of macrophages. Thus A cell function was detected in fractions rich in small and medium sized macrophages which were probably derived from recently arrived monocytes. Immunosuppressive (and anti-tumor) activity was associated with the largest macrophages which were almost devoid of A cell function and probably represented a highly activated and differentiated macrophage subpopulation.  相似文献   

11.
C57BL/6 (B6, H-2b) mice are CTL responders to both Sendai virus and Moloney leukemia virus. In the former response the H-2Kb class I MHC molecule is used as CTL restriction element, in the latter response the H-2Db molecule. B6 dendritic cells (DC) are superior in the presentation of Sendai virus Ag to CTL in comparison with B6 normal spleen cells. Con A blasts have even less capacity to present viral Ag than NSC, and LPS blasts show an intermediate capacity to present viral Ag. H-2Kb mutant bm1 mice do not generate a CTL response to Sendai virus, but respond to Moloney leukemia virus, as demonstrated by undetectable CTL precursors to Sendai virus and a normal CTL precursor frequency to Moloney virus. Compared to B6 mice, other H-2Kb mutant mice show decreased Sendai virus-specific CTL precursor frequencies in a hierarchy reflecting the response in bulk culture. The Sendai virus-specific CTL response defect of bm1 mice was not restored by highly potent Sendai virus-infected DC as APC for in vivo priming and/or in vitro restimulation. In mirror image to H-2Kb mutant bm1 mice, H-2Db mutant bm14 mice do not generate a CTL response to Moloney virus, but respond normally to Sendai virus. This specific CTL response defect was restored by syngeneic Moloney virus-infected DC for in vitro restimulation. This response was Kb restricted indicating that the Dbm14 molecule remained largely defective and that a dormant Kb repertoire was aroused after optimal Ag presentation by DC. In conclusion, DC very effectively present viral Ag to CTL. However, their capacity to restore MHC class I determined specific CTL response defects probably requires at least some ability of a particular MHC class I/virus combination to associate and thus form an immunogenic complex.  相似文献   

12.
Previously, we demonstrated that memory cell-mediated immune responses can be generated in Pichinde virus (PV)-primed mice after secondary challenge in vivo with homologous virus. Further, treatment of mice with cyclophosphamide (CY) before primary infection with PV abrogated the generation of H-2-restricted, virus-specific cytotoxic T lymphocytes (CTL), and rechallenge of these mice was followed by neither a primary nor a secondary CTL response. Here, we demonstrate that this CY-induced block in memory anti-PV CTL generation was not due to establishment of a persistent infection. Interestingly, this CY-induced block in memory anti-PV CTL generation was overcome by secondarily coinfecting mice with PV and lymphocytic choriomeningitis virus (LCMV) or PV and Tacaribe virus. Secondary infection with LCMV or Tacaribe virus alone did not elicit anti-PV CTL. Coinfection resulted in the generation of a PV-specific memory CTL response as judged by maximal activity on day 4 after rechallenge. Co-infection with PV and vesicular stomatitis virus, an unrelated rhabdovirus, did not efficiently restore memory anti-PV CTL responses. Memory anti-PV CTL responses were also restored when interleukin 2 (IL 2)-containing supernatants were injected i.p. after rechallenge of CY-treated mice with PV. To demonstrate that IL 2 was the responsible lymphokine in these preparations, highly purified IL 2 was added to in vitro cultures of spleen cells from CY-treated PV-primed mice. In the presence of PV-infected syngeneic macrophages, addition of purified IL 2 resulted in a dose-dependent restoration of H-2-restricted anti-PV CTL activity. The CTL precursor (CTLp) frequency of CY-treated PV-primed mice was markedly decreased from that of normal PV-primed mice. Thus, the long-lasting block in the ability to generate a PV-specific memory CTL response after CY treatment appears to be due to both a lack of helper T cell activity and a significant reduction of CTLp. However, this block may be overcome by coinfecting with viruses that cross-react at the helper T cell level or by exogenous treatment with highly purified IL 2.  相似文献   

13.
Examined in this paper is the capacity of 334C murine leukemia virus (MuLV) to stimulate the generation of virus-specific cytotoxic effector cells in mice of the C57BL/6 strain that are relatively resistant to Friend, Moloney, and Rauscher (FMR) MuLV-induced leukemia, and in BALB/c mice that are relatively susceptible to leukemia induced by FMR MuLV. Generation of cytotoxicity requires in vivo administration of the virus followed by in vitro culture of lymphoid cells from virus-injected animals. Lymphoid cells from MuLV-resistant C57BL/6 donors develop high levels of specific cytotoxicity after secondary in vitro stimulation with syngeneic MuLV-induced tumor cells. Cells derived from these same donors, cultured in the absence of MuLV-induced tumor cells, fail to exhibit cytotoxicity. Secondary in vitro stimulation of lymphocytes from MuLV-susceptible BALB/c animals results not only in generation of cytotoxic reactivity against syngeneic MuLV-induced tumor cells but also induces apparently autoreactive effector cells capable of lysing other H-2d tumor cells as well as normal peritoneal cells bearing H-2d antigens. Moreover, generation of cytotoxicity by BALB/c lymphocytes occurs whether or not MuLV-induced tumor cells are included in the secondary culture system.  相似文献   

14.
Cytolytic T lymphocytes (CTL) were generated in secondary mixed leukocyte-tumor cell cultures (MLTC) with syngeneic RB1-5 tumor cells as stimulating cells and with responding spleen cells from regressor mice that had rejected a murine sarcoma virus (MSV)-induced tumor. CTL precursor cells were found to be exclusively of thymic origin and non-T cells were apparently not required for CTL generation. When the size variations of CTL from syngeneic MLTC were analyzed by velocity sedimentation it appeared that a transition from small precursor cells to larger effector cells occurred during the first 5 days in culture; this change in cell size was then followed by a shift toward small-sized cells. Furthermore, the CTL generated in syngeneic MLTC in the MSV tumor immune system were compared with those CTL obtained in allogeneic mixed leukocyte cultures (MLC) and were shown to exhibit fundamental similarities.  相似文献   

15.
Syngeneic, semiallogeneic, or allogeneic spleen lymphocytes were transferred intonu/nu BALB/c mice, which were infected with vaccinia virus. Specific Sensitization of transferred thymus-derived cells was determined in vivo by mean survival time and virus titer in the spleen six days after infection, and in vitro by cell-mediated cytolysis of vaccinia virus-infected syngeneic target cells. Virus-specific Sensitization took place only after transfer of syngeneic or semiallogeneic spleen lymphocytes; allogeneic lymphocytes had no influence on mean survival time or virus titer and showed no virus-specific cytolytic activity in vitro. Infection of mice with vaccinia virus-strain WR, Elstree, DIs, or DIs-infected syngeneic fibroblasts resulted in the generation of virus-specific effector cells, while injection of a high amount of inactivated virus particles caused no Sensitization. These results suggest H-2 homology for production of virus-specific effector cells. Propagation of virus is not necessary, since early surface antigens, combined with syngeneic H-2 antigens, suffice for Sensitization of cytolytic T lymphocytes.Abbreviations used in this paper are as follows CMC cell-mediated cytolysis - CTL cytolytic T lymphocyte - LCM lymphocytic choriomeningitis - MHC major histocompatibility complex - MST mean survival time - T cell thymus-derived cell - TCID50 50 percent tissue culture infective dose  相似文献   

16.
Studies were designed to analyze the immune activities of spleen cells from mice previously injected with murine sarcoma virus (MSV) and undergoing the processes of MSV tumor growth and rejection. Fractionation of MSV-primed spleen cells according to cell size by velocity sedimentation at unit gravity showed that MSV-specific cytolytic T lymphocytes (CTL) generated in vivo underwent an apparent transition in size from large to small cells as the tumor regressed. The majority of CTL precursors, however, were invariably recovered among small to medium-sized MSV-immune cells, as revealed to CTL generation in vitro in secondary mixed leukocyte-tumor cell cultures (MLTC). Evidence was obtained for the existence in MSV-immune spleens of two suppressor cell populations capable of inhibiting CTL generation in vitro: one population probably consisted of macrophages and could be removed by treatment with carbonyl iron; the second population was comprised of T cells and inhibited the differentiation of tumor-immune CTL precursors in a selective manner. These results provide a preliminary overview of the mechanisms regulating the generation, differentiation, and activity of tumor-specific CTL in a syngeneic model system.  相似文献   

17.
Summary Tumour-specific cytotoxic T lymphocytes (CTL) are usually obtained after immunization in vivo and restimulation of immune cells in vitro. We here describe the generation of syngeneic tumour-specific CTL within no more than 9 days by priming and restimulation in vivo. This is achieved only if the correct sites are used both for primary immunization (ear pinna) and for restimulation (peritoneal cavity). The kinetics of immune T cell induction and of the secondary response in vivo will be reported. While a secondary CTL response could be generated in the peritoneal cavity, this was not possible in the spleen, no matter which routes of antigen restimulation were used. Upon transfer of immune spleen cells into the peritoneal cavity but not into the spleen, a secondary response could be generated upon in situ restimulation, indicating the importance of the correct microenvironment for this type of response. The peritoneal effector cells were true T cells and recognized a tumour-associated antigen in association with the Kd major histocompatibility (MHC class I) antigen. Finally the activated tumour-specific peritoneal exudate cells were able to transfer protective immunity without exogenous interleukin-2 into normal syngeneic mice.  相似文献   

18.
It has been previously shown that the in vitro antibody response to TNP-Ficoll requires the presence of adherent accessory cells. In order to determine if this characteristic was unique to TNP-Ficoll or a general feature of the TI-2 antibody responses, responses to the polysaccharide antigens TNP-Levan and TNP-Dextran were studied. Also, it was determined if the functionally relevant accessory cell expresses Ia determinants. Passage of spleen cells over Sephadex G-10 abrogated the response to TNP-Levan and TNP-Dextran as well as to TNP-Ficoll. Addition of adherent accessory cells to the G-10 passed spleen cells reconstituted the response to all 3 antigens. Pretreatment of the adherent accessory cells with a specific anti-Ia serum plus complement abrogated the ability of these cells to provide accessory cell function in the responses to all 3 antigens. Thus, an Ia-positive adherent accessory cell is required for the generation of TI-2 antibody responses to these polysaccharide antigens. This raises the possibility that genetic restrictions may exist between the Ia-positive accessory cell and the lymphocytes involved in the responses to TNP-Ficoll, TNP-Dextran, and TNP-Levan.  相似文献   

19.
Somatic tumor hybrid cells (L-FM3A#2), obtained by hybridization of MM tumor cells (FM3A/R) with HGPRT-less L cells, could induce CTL directed against MM antigen, a tumor-associated transplantation antigen that is expressed on some ascitic mammary tumor cell lines of C3H/He mice; parental tumor cells (FM3A/R) could not produce such CTL in syngeneic mice. In this study, the mechanisms of the generation of CTL by stimulation with L-FM3A#2 hybrid cells were investigated. In the secondary in vitro stimulation system, L cell component(s) that were introduced into hybrid cells by cell fusion play a role in the induction of CTL, as shown by the fact that stimulation with a mixture of L and FM3A/R cells could induce MM antigen-specific CTL, and that the killer helper effect of L cells could be replaced by cell free culture supernatants obtained from co-cultures of unprimed C3H spleen and L cells. IFN activity, but no IL 2 activity, was detected in the culture supernatants. Both IFN and killer helper activity were lost with pH 2 treatment; furthermore, CTL were generated by stimulation of primed spleen cells with FM3A/R cells in the presence of mouse beta-IFN, but not in its absence. These results suggest that IFN liberated by the helper cells that recognize L cell component(s) on the surfaces of tumor hybrid cells plays an essential role in the generation of CTL specific for MM antigen.  相似文献   

20.
A Moloney leukemia virus-induced lymphoma of the A.SW strain, YWA, was used to generate cytotoxic cells in vitro. Cocultivation of spleen cells from in vivo primed syngeneic and semisyngeneic mice with X-irradiated YWA tumor cells for 5 days resulted in a strong killing activity against YWA. The cytotoxicity was H-2 restricted and mediated by Thy-1.2-positive lymphocytes. F1 hybrids with variable degrees of natural resistance to the YWA tumor in vivo all generated cytotoxic cells after secondary stimulation in vitro but showed differences in optimal responder:stimulator requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号