首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial flora of samples taken from a subterranean saline well was enriched (1) by periodic salinity increase and (2) by periodic salinity decrease, both at 25° and 35°C. During the enrichment process, bacterial flora, including halotolerant, marine, moderately and extremely halophilic bacteria, were enumerated. Results were similar at both temperatures. Marine bacteria and moderately halophilic microorganisms were the most favoured groups, predominating between 3 and 30% (w/v) salt content; extremely halophilic bacteria also appeared when salinity reached 30% (w/v) and halotolerant bacteria were poorly represented. The taxonomic distribution of 125 selected strains, chosen at random from counting media, was essentially similar to those from other hypersaline environments.  相似文献   

2.
Abstract Four strictly anaerobic, chemoorganotrophic halophiles were isolated from the hypersaline surface sediments of the evaporating closed lagoon at the rim of Salton Sea, California, and of Big Soda Lake, Nevada, whose condition was not strictly anaerobic. All of the isolates were Gram-negative, motile, non-spore-forming, moderately halophilic eubacteria and required a minimum concentration of 3–10% NaCl in the growth medium. Among the four isolates, strain SS-21 could grow at more than 30% NaCl concentration, and strain M-20 was an alkalophine. Isolation of these bacteria suggests that a variety of anaerobic halophiles is widely distributed in hypersaline environments.  相似文献   

3.
Hypersaline waters in salterns have so far been considered to be populated only with halophilic algae and bacteria and completely lacking halophilic fungi. In this paper we present population dynamics of polymorphic black yeasts, isolated from hypersaline waters (3-30% NaCl) of a saltern, in relation to different physicochemical parameters. Hortaea werneckii, Phaeotheca triangularis, Trimmatostroma salinum, Aureobasidium pullulans and Cladosporium spp. were detected with the highest frequency just before the peak of halite (NaCl) concentration. Since H. werneckii, P. triangularis and T. salinum are not known outside saline environments, these results suggest that hypersaline water is their natural ecological niche.  相似文献   

4.
为了解柴达木盆地茶卡盐湖、柯柯盐湖和小柴旦盐湖等三大硫酸镁亚型高盐盐湖可分离嗜盐耐盐菌的种群多样性,采用RM中、高盐培养基筛选分离可培养的嗜盐菌和耐盐菌,扩增16S rRNA基因序列进行种属鉴定和环境因子典范对应分析(CCA),选取优势菌属构建系统发育树,并采用高效液相色谱法(HPLC)检测次级代谢产物四氢嘧啶(Ect...  相似文献   

5.
The taxonomic significance of salt tolerance or requirements in green sulfur bacteria has been analyzed with environmental populations and enrichment cultures from several saline systems (inland and coastal water bodies) with different salinities (salt composition and concentration). Novel phylotypes of green sulfur bacteria have been found in hypersaline and brackish environments and 16S rRNA gene sequence analysis affiliated them into phylogenetic groups in which neither halotolerant nor halophilic species have been known to date. Therefore, salt tolerance does not seem to be restricted to members of any specific subgroup but is widespread among all the different phylogenetic branches of the green sulfur bacteria group, and closely-related phylotypes can have dissimilar salt tolerance capacities. Thus the phenotypic characteristics and phylogenetic structure of the green sulfur bacteria present some incongruities. Phenotypic traits should be studied further in order to determine the ecophysiological features of green sulfur bacteria phylotypes.  相似文献   

6.
【背景】嗜盐微生物多生活于高盐环境,具有独特的生理代谢特征,是一类重要的极端环境微生物资源。【目的】为更好地认识我国陆相盐矿的嗜盐微生物多样性组成,更好地开发利用嗜盐微生物资源积累丰富的微生物菌种。【方法】对安徽定远盐矿盐芯样品进行嗜盐微生物的纯培养分离,并对所分离菌株进行基于16SrRNA基因的测序和序列相似性分析,并对所分离菌株进行物种多样性分析。在此基础上,对代表菌株进行菌落形态和耐盐度及酶活测定。【结果】通过纯培养共分离获得了嗜盐微生物264株,其中嗜盐古菌150株,占56.8%;嗜盐细菌114株,占43.2%。嗜盐古菌物种分别来自于Halorubrum、 Halopenitus、 Haloterrigena、 Natrinema、 Natronoarchaeum和Natronomonas等6个属;嗜盐细菌物种分别来自于Pseudomonas、Aliifodinibius、Halobacillus、Halomonas和Halospina等5个属。通过代表菌株的酶活平板检测,发现产胞外蛋白酶菌株1株,酯酶1株,淀粉酶2株;能液化明胶菌株2株。在物种多样性组成方面,发现嗜盐古菌的物种多样性指数高于嗜盐细菌。【结论】本研究对我国安徽定远陆相盐矿的可培养嗜盐微生物多样性进行探究,积累了丰富的嗜盐微生物菌株资源。  相似文献   

7.
Natural hypersaline waters are widely distributed around the globe, as both continental surface waters and sea floor lakes, the latter being maintained by the large density difference between the hypersaline and overlying marine water. Owing to the extreme salt concentrations, close to or at saturation (approximately 35%, w/v), such waters might be expected to be devoid of life but, in fact, maintain dense populations of microbes. The majority of these microorganisms are halophilic prokaryotes belonging to the Domain Archaea, 'haloarchaea'. Viruses infecting haloarchaea are a vital part of hypersaline ecosystems, in many circumstances outnumbering cells by 10-100-fold. However, few of these 'haloviruses' have been isolated and even fewer have been characterised in molecular detail. In this review, we explore the methods used by haloviruses to replicate within their hosts and consider the implications of haloviral-haloarchaeal interactions for salt lake ecology.  相似文献   

8.
Types and properties of some bacteria isolated from hypersaline soils   总被引:4,自引:2,他引:2  
Five rhizosphere soil samples from the dominant xerophytic plants, and nearby root-free soil samples were obtained from a series of hypersaline soils (5.0–10.7% NaCl) from sites near Alicante in Spain. Physico-chemical analyses were made, and the bacterial flora estimated using three different plating media. Counts from rhizosphere soil were always significantly higher than those from root-free soils. A total of 211 strains isolated were purified and identified to genus level; 12 could not be classified. The range of salt concentration allowing growth was determined for each isolate, but this did not correlate with the salt content of the soil habitat. Most isolates appeared to be typical moderate halophiles (with optimum growth between 5 and 15% salts), but about half of them grew on normal media with only 0.9% naCl, a notable difference from moderately halophilic aquatic bacteria. Extreme halophiles were rare but this may have been due to an insufficient incubation period.  相似文献   

9.
A multi-pond saltern that creates a gradient of salt concentrations has been studied with respect to some characteristics of the resulting environments and their microbial populations. The increase in salt concentration was correlated with increase in diurnal temperature and biomass present and with decrease in oxygen concentrations. Many types of organisms below 15% (w/v) total salts, were found, many of them normal inhabitants of seawater and even freshwater. Most organisms over 15% salts were halophilic. The salt concentrations comprised two ranges, each characterized by different microbial populations. First, between 15 and 30% salts, the populations ofDunaliella increased, reaching large numbers; moderately halophilic eubacteria and some fast-growing halobacteria predominated as heterotrophic microorganisms and, among the first, thePseudomonas-Alteromonas-Alcaligenes group andVibrio were the more abundant taxonomic groups; and gram-positive cocci appeared mainly over 25% salts. Phototrophic bacteria, both oxygenic and anoxygenic, were also found in this range, and among the anoxygenic type,Chromatium species andRodospirillum salexigens were probably predominant. Second, over 30% salts the diversity decreased greatly, all organisms found at the lower salt concentrations disappeared, and instead large populations of halobacteria developed. Over 50% salts, only three species of halobacteria were found.  相似文献   

10.
嗜盐菌对高盐有机废水处理的强化作用   总被引:2,自引:0,他引:2  
为解决高盐有机工业废水处理这一难题, 从山东省威海市路道口盐场晒盐池盐水中分离一株嗜盐菌株YS-1, 通过对该菌株进行原子力显微镜观察、生理生化测定、全细胞脂肪酸分析和16S rDNA序列同源性分析发现YS-1菌株16S rDNA序列与Halomonas sp. (AB167061)的亲缘关系最为接近, 结合上述其它各项结果确定该菌株为盐单胞菌属(Halomonas sp.), 属中度嗜盐菌; 在SBR反应器中对该菌株进行强化高盐有机废水处理试验, 结果表明, 含盐12%、CODcr=1494 mg/L的高盐模拟有机废水, 经72 h CODcr去除率为90.0%, 120 h的CODCr去除率为98.1%, 该菌株具有强化高盐有机废水处理的功能, 通过分离筛选嗜盐菌强化高盐有机工业废水处理具有可行性。  相似文献   

11.
Lysis of Halobacteria in Bacto-Peptone by Bile Acids   总被引:3,自引:0,他引:3       下载免费PDF全文
All tested strains of halophilic archaebacteria of the genera Halobacterium, Haloarcula, Haloferax, and Natronobacterium lysed in 1% Bacto-Peptone (Difco) containing 25% NaCl, whereas no lysis was observed with other strains belonging to archaebacteria of the genera Halococcus, Natronococcus, and Sulfolobus, methanogenic bacteria, and moderately halophilic eubacteria. Substances in Bacto-Peptone which caused lysis of halobacteria were purified and identified as taurocholic acid and glycocholic acid. High-performance liquid chromatography analyses of peptones revealed that Bacto-Peptone contained nine different bile acids, with a total content of 9.53 mg/g, whereas much lower amounts were found in Peptone Bacteriological Technical (Difco) and Oxoid Peptone. Different kinds of peptones can be used to distinguish halophilic eubacteria and archaebacteria in mixed cultures from hypersaline environments.  相似文献   

12.
Biodegradation of organic pollutants by halophilic bacteria and archaea   总被引:2,自引:0,他引:2  
Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.  相似文献   

13.
The halophilic community of natural hypersaline soils has been isolated. Species of the genera Penicillium, Aspergillus, Cladosporium, as well as dark-colored yeast-like organisms, are most frequently isolated on selective media from all saline soil samples that we have studied. It has been shown that the community of micromycetes of hypersaline habitats is less dependent on geographical position than on the physicochemical parameters of habitat.  相似文献   

14.
Although hypersaline environments have been extensively examined, only a limited number of microbial community studies have been performed in saline tide pools. We have studied a temporary salt-saturated tide pool and isolated prokaryotes from the water. Chlorinity measurements revealed that the tide pool brine could be characterized as one of the most hypersaline ecosystems on earth. Enumeration of microorganisms at different salinities showed that the tide pool was dominated by moderate halophiles. Based on 16S rRNA gene sequence analysis, the prokaryotic strains isolated were related to the bacterial genera Rhodovibrio, Halovibrio, Aquisalimonas, Bacillus and Staphylococcus and to the haloarchaeal species Haloferax alexandrinus. Four bacterial isolates were distantly related to their closest validly described species Aquisalimonas asiatica (96.5 % similarity), representing a novel phylogenetic linkage. Ecophysiological analysis also revealed distinct phenotypic profiles for the prokaryotic strains analyzed. The herbicide 2,4-dichlorophenoxyacetate could be effectively utilized by selected strains as the sole carbon source, but phenolic compounds could not be utilized by any of the halophilic isolates examined. None of the halophilic strains were able to grow without the presence of sea salt or seawater. Based on these results, we conclude that moderate halophilic bacteria rather than extremely halophilic archaea dominate in such a hypersaline environment.  相似文献   

15.
Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.  相似文献   

16.
盐田土壤嗜盐微生物对盐田生态系统的良性循环和盐的生产至关重要。本文对江苏连云港台北盐田土壤和盐城三圩盐田土壤的嗜盐细菌和古菌的多样性进行了研究, 结果表明两地盐土嗜盐细菌和古菌的分布具有相似性和独特性。采用培养法从两地盐土中共分离到17株嗜盐细菌, 其中Halomonas为两地盐土共有的嗜盐细菌, 而Halobacillus和Pontibacillus仅在三圩盐土中发现。通过非培养的16S rDNA 基因文库法从两地盐土中发现了13种嗜盐古菌, 台北盐土有Halobacterium 和 Haloplanus, 三圩盐土有Halobacterium, Natronobacterium, Halogeometricum 和 Haloarcula。10个嗜盐古菌的16S rDNA和GenBank已知序列的同源性为92%~97%, 可能为这些属中的新种。该研究为盐田环境嗜盐微生物资源的开发和利用奠定了基础。  相似文献   

17.
盐田土壤嗜盐微生物对盐田生态系统的良性循环和盐的生产至关重要.本文对江苏连云港台北盐田土壤和盐城三圩盐田土壤的嗜盐细菌和古菌的多样性进行了研究,结果表明两地盐土嗜盐细菌和古菌的分布具有相似性和独特性.采用培养法从两地盐土中共分离到17株嗜盐细菌,其中Halomonas为两地盐土共有的嗜盐细菌,而Halobacillus和Pontibacillus仅在三圩盐土中发现.通过非培养的16S rDNA基因文库法从两地盐土中发现了13种嗜盐古菌,台北盐土有Halobacterium和Haloplanus,三圩盐土有Halobacterium, Natronobacterium, Halogeometricum和Haloarcula. 10个嗜盐古菌的16S rDNA和GenBank已知序列的同源性为92%~97%.可能为这些属中的新该研究为盐田环境嗜盐微生物资源的开发和利用奠定了基础.  相似文献   

18.
Halobacteria: the evidence for longevity   总被引:3,自引:0,他引:3  
Subterranean salt deposits are the remains of ancient hypersaline waters that presumably supported dense populations of halophilic microorganisms including representatives of the haloarchaea (halobacteria). Ancient subterranean salt deposits (evaporites) are common throughout the world, and the majority sampled to date appear to support diverse populations of halobacteria. The inaccessibility of deep subsurface deposits, and the special requirements of these organisms for survival, make contamination by halobacteria from surface sites unlikely. It is conceivable that these subterranean halobacteria are autochthonous, presumably relict populations derived from ancient hypersaline seas that have been revived from a state of dormancy. One would predict that halobacteria that have been insulated and isolated inside ancient evaporites would be different from comparable bacteria from surface environments, and that it might be possible to use a molecular chronometer to establish if the evolutionary position of the subsurface isolates correlated with the geological age of the evaporite. Extensive comparisons have been made between the 16S rRNA genes of surface and subsurface halobacteria without showing any conclusive differences between the two groups. A further phylogenetic comparison exploits an unusual feature of one particular group of halobacteria that possess at least two heterogeneous copies of the 16S rRNA gene, the sequences of which may have been converging or diverging over geological time. However, results to date have yet to show any gene sequence differences between surface and evaporite-derived halobacteria that might arguably be an indication of long-term dormancy. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

19.
新疆艾丁湖及邻近地区嗜盐菌和耐盐菌的数量分布   总被引:12,自引:0,他引:12  
以盐(NaCI)为限制性生物因子,对艾丁湖地区原核生物的分布状态进行调查,从距艾丁湖中心1.5km处出发,定距离,分季节取土样及水样(共取样20个)。对样品菌群数量统计表明,在湖水中,春秋两嗜盐菌的数量高于耐盐菌。冬季湖水温度大大降低,盐结晶沉淀,湖水中的盐浓度降低,使得湖水中的耐盐菌的数量高于嗜盐菌的数量。土壤中的有要物比湖水中的丰富,温度也较稳定,因而耐盐菌的数量高于嗜盐菌的数量。距湖岩越远,土壤中对盐依赖性强的细菌越少,反之对盐依赖性弱的菌越多。由样品中分离得到细菌173株,放线菌12株,以不同浓度NaCI为唯一生长限制因子对所分离到的细菌进行生理生化实验,获得嗜盐菌61株,其中除3株可视为新种外(新种的鉴定将另外报告),其它均为嗜盐菌的已知产生菌种,现仅报道艾丁湖及邻近地区以盐为限制因子的原核微生物分布。  相似文献   

20.
Denitrification by extremely halophilic bacteria   总被引:1,自引:0,他引:1  
Abstract Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号