首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocalewicz K  Woznicki P  Jankun M 《Genetica》2008,134(2):199-203
In the current paper we described the application of primed in situ (PRINS) labeling approach for the chromosomal mapping of repetitive DNA sequences in Danube salmon (Hucho hucho) (2n = 82, NF = 112). PRINS was successfully performed with primers enabling amplification of 5S rRNA genes (minor rDNAs), NOR building DNA sequences (major rDNAs), and telomeric sequences. Two loci of 5S rRNA were observed on distinct chromosome pairs; the minor arrays were located interstitially on the long (q) arms of two large metacentrics (chromosomes No. 3) and the large clusters of 5S rDNAs were assigned to the short (p) arms of two subtelocentric chromosomes No. 18. Major rDNA clusters were observed on the p-arms of two submeta-subtelocentric chromosomes No. 10. These chromosomal areas were built with GC-rich chromatin what was proved in the course of chromomycin A(3) (CMA(3)) staining performed sequentially. Major and minor rDNA families were not co-localized in the Danube salmon chromosomes.The distinct hybridization signals at the ends of all the chromosomes were provided in the course of PRINS with (CCCTAA)( n ) primer. The chromosomal localization of rRNA genes and telomeric DNA sequences was discussed in the context of Salmonidae karyotype evolution.  相似文献   

2.
以薄片牡蛎(Dendostrea folium)成体鳃组织为材料制备有丝分裂中期染色体标本,对其染色体核型进行了分析,并运用荧光原位杂交技术(FISH)将18S-28S核糖体RNA基因定位于中期染色体上。FISH探针是通过PCR扩增介于18S-28S rRNA基因之间的ITS和5.8S rRNA基因序列,并在PCR扩增过程中掺入了Biotin-11-dUTP进行生物素标记。结果显示,薄片牡蛎的单倍染色体数目为n=10,全部为中部着丝粒染色体。与大多数已知巨蛎属牡蛎的染色体核型相似。ITS探针在薄片牡蛎中期分裂体相上产生两簇FISH信号,分别杂交于2号染色体短臂的近端粒区域。本研究首次报道了薄片牡蛎的中期染色体核型以及18S-28S核糖体RNA基因在染色体上的定位。  相似文献   

3.
The chromosomal locations of the 18S + 28S and 5S ribosomal RNA genes have been analyzed by in situ hybridization in ten anuran species of different taxonomic positions. The chosen species belong to both primitive and evolved families of the present day Anura. Each examined species has 18S + 28S rRNA genes clustered in one locus per haploid chromosome set: this locus is placed either in an intercalary position or proximal to the centromere, or close to the telomere. The 5S rRNA genes are arranged in clusters which vary in number from one to six per haploid set. The 5S rDNA sites are found in intercalary positions, at the telomeres, and at, or close to, the centromeres. Microchromosomes and small chromosomes in primitive karyotypes have been found to carry 5S rDNA sequences. The results are discussed in relation to ideas on the karyological evolution of Amphibia.  相似文献   

4.
In the house cricket,Acheta domesticus, the 110 genes per haploid genome encoding 18S and 28S rRNA are contained within rDNA repeats which are amplified during oogenesis. The 5S rRNA coding sequences of this cricket are found in two sizes of 5S DNA repeating units (measuring 2.1 and 3.0 kb). The 3.0 kb repeats account for more than 90% of the totalAcheta 5S DNA. We have determined the number of cricket 5S rRNA genes by RNA-DNA hybridization analysis: 310 5S DNA repeats/haploid genome clearly approximates the number of 18S and 28S rRNA genes. Because of the relatively low copy number of 5S rRNA genes the possibility of 5S DNA amplification in oocytes ofA. domesticus was also examined. Although amplification of rDNA is readily detectable, amplification of 5S DNA is not observed in oocytes ofA. domesticus. Unlike the genes coding for 18S and 28S rRNA which are localized at a single chromosomal site in the genome ofA. domesticus, the 5S rRNA genes occupy numerous sites distributed along the length of most chromosomes.  相似文献   

5.
Hatanaka T  Galetti PM 《Genetica》2004,122(3):239-244
A single NOR-bearing chromosome pair was identified by silver nitrate staining in a previous study of the fish Prochilodus argenteus from the S ã o Francisco River (MG, Brazil), with a third metacentric chromosome sporadically bearing active NOR. The present study focused on an analysis of the chromosomal localization of both the major (45S) and the minor (5S) rRNA genes using FISH. The use of the 18S rDNA probe confirmed the previous Ag-NOR sites interstitially located in a large metacentric pair and also identified up to three other sites located in the telomeric regions of distinct chromosomes, characterizing an interindividual variation of these sites. In addition, the 5S rDNA site was revealed adjacent to the major NOR site, identified at the end of the large Ag-NOR bearing metacentric chromosome. In a few metaphases, an additional weak hybridization signal was observed in a third chromosome, possibly indicating the presence of another 5S rDNA cluster. Despite a lower karyotype diversification (2n=54 and FN=108) often observed among species of Prochilodontidae, variations involving both 45S and 5S rRNA genes could play an important role in their chromosome diversification.  相似文献   

6.
The molecular karyotype of Perkinsus olseni, a pathogenic protist that infects the clam Ruditapes decussatus, comprises nine chromosomes, ranging in size from 0.15 Mb to 6.5 Mb, representing a haploid genome of about 28 Mb. In order to establish chromosome specific markers, PCR-amplified DNA sequences belonging to five conserved genes (18S rRNA, actin type I, hsp90, β-tubulin and calmodulin) were hybridised to chromosomal bands separated by pulsed-field gel electrophoresis. Three of those probes (actin type I, hsp90 and calmodulin) hybridised to only one chromosome and the remaining two (18S rRNA and β-tubulin) hybridised to two chromosomes. In the first place, the hybridisation pattern obtained serves to dispel any doubt about the nuclear location of the smallest chromosome observed in the molecular karyotype of Perkinsus olseni. Additionally, it will be a reference for further analysis of karyotype polymorphisms in the genus Perkinsus.  相似文献   

7.
Affonso PR  Galetti PM 《Genetica》2005,123(3):227-233
The genus Centropyge is remarkable for species richness, composing a highly specialized fish group amongst members from family Pomacanthidae. However, cytogenetical reports are nearly absent in these animals. New data are provided from karyotypical studies carried out on Centropyge aurantonotus from the Brazilian coast of the Atlantic Ocean and C. ferrugatus from the Philippines Sea of the Indo-Pacific Ocean. Both species present 2n=48 but karyotypes are differentiated by fundamental number. C. aurantonotus has a great number of biarmed chromosomes (4 m + 14 sm+16 st+4 a), while C. ferrugatus presents only acrocentric chromosomes. Single nucleolar organizer regions (NORs) are located at interstitial position of an acrocentric pair in C. ferrugatus and on short arms of a subtelocentric pair in C. aurantonotus, as confirmed by fluorescent in situ hybridization (FISH) with 18S rDNA probes. Heterochromatin is distributed over NOR and centromeric regions in both species, but additional GC-rich heterochromatic blocks on short arms of up to eight chromosomal pairs can be detected in C. aurantonotus. 5S rDNA segments were located interstitially on two chromosomal pairs in C. ferrugatus and on nine pairs in C. aurantonotus, mostly equivalent to heterochromatic blocks on short arms of biarmed chromosomes. C. ferrugatus can be considered a species in which basal chromosomal features proposed for modern Teleosteans were conserved. The derived karyotype pattern of C. aurantonotus seems to be determined by pericentric inversions and heterochromatin addition which probably determined the notorious dispersion of 5S rRNA (pseudo)genes. It is demonstrated that, even within a group generally characterized by cytogenetical homogeneity as the family Pomacanthidae, diversified karyotypes can be found.  相似文献   

8.
Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans   总被引:6,自引:0,他引:6  
D W Nelson  B M Honda 《Gene》1985,38(1-3):245-251
We have identified a 1-kb genomic sequence that represents the major class of 5S rRNA genes in the nematode Caenorhabditis elegans. This 1-kb sequence is tandemly repeated 110 times in the haploid genome forming a single homogeneous gene family. Other nematode genomic sequences, distinct from the major 1-kb repeat class but homologous to it, may represent dispersed 5S rRNA genes or the ends of a gene cluster. One such fragment shows a restriction fragment length difference between two C. elegans strains. This should allow the genetic analysis of 5S rRNA-coding DNA (5S X rDNA) and its flanking regions in C. elegans.  相似文献   

9.
In this paper, haemocyte antigenicity of seven bivalve species (scallop (Chlamys farreri), bay scallop (Argoecten irradians), oyster (Crassostrea talienwhanensis), asiatic hard clam (Meretrix meretrix), monila clam (Ruditapes philipinarum), purplish washington clam (Saxidomus purpuratus) and horny ark (Scapharca subcrenta)) were analysed using monoclonal antibodies (MAbs) 1E7, 1F12, 2C6 and 2H5 against haemocytes of C. farreri, employed methods of immuno-dotblotting (IDB), indirect immunofluorescence assay (IIFA) and western-blotting (WB). The four MAbs react with haemocytes of seven bivalve species. As the results for both IDB and IIFA, MAb 1E7 was positive with haemocytes of R. philipinarum, MAb 1F12 with haemocytes of A. irradians, M. meretrix, R. philipinarum and S. purpuratus; MAb 2C6 with haemocytes of the other five bivalve species except for S. purpuratus. MAb 2H5 was negative with haemocytes of the other six bivalve species in IDB, but was positive with haemocytes of R. philipinarum and S. purpuratus in IIFA. Further experiments by WB showed MAb 1F12 was able to recognise the protein of A. irradians haemocyte at molecular weights of 156 and 80 kDa, haemocytes of M. meretris, R. philipinarum, S. purpuratus, at 60, 30, 58 kDa, respectively. MAb 2C6 recognised haemocyte M. meretris proteins at 50 and 37 kDa, A. irradians, C. talienwhanensis, R. philipinarum, S. subcrenta at 40, 38, 38, 45 kDa, respectively. There were no protein bands reacting with MAb 1E7 and MAb 2H5. The results indicate antigenic similarities exist among haemocytes of the seven bivalve species.  相似文献   

10.
Evolutionary relationships of the Pectinidae were examined using two mitochondrial genes (12S rRNA, 16S rRNA) and one nuclear gene (Histone H3) for 46 species. Outgroup taxa from Propeamussidae, Spondylidae and Limidae were also sequenced to examine the impact of outgroup choice on pectinid topologies. Our phylogenetic analyses resolved the Pectinidae as monophyletic, but many of the subfamilies and tribes within the family do not form monophyletic clades. The paraphyletic Aequipectinini group is the most basal member of the Pectinidae, with the Chlamydinae and Palliolinae representing the most recently derived pectinid groups. These results are in contrast with the current morphological hypothesis of Pectinidae evolution, which suggests the Chlamydinae and Pallioline are basal groups within the Pectinidae. Ingroup topology was found to be sensitive to outgroup choice and increasing taxon sampling within the Pectinidae resulted in more robust phylogenies.  相似文献   

11.
12.
A physical map of the 5S and 18S–26S rRNA genes was determined using bi-color fluorescencein situ hybridization technique inA. victorialis var.platyphyllum. 5S rRNA genes were positioned in the intercalary regions of the short arms in homologous chromosomes 6. Two major loci of the 18S-26S rRNA genes were detected in the secondary constrictions flanking with a pair of satellite and terminal region of short arm in chromosome 4. And two additional minor loci were heterotype, representing one signal on the terminal region of the short arm in one homolog of chromsome 2, and other on one homolog of chromosome 6 with linked 5S rRNA loci. In addition chromomycin A3 (CMA,) fluorescent banding method was used to identify the relation between Nucleolus Organizer Region (NOR) sites and CMA, positive heterochromatin sites. In homologous chromosome 4 showing 18S–26S rDNA hybridization signals revealed also distinct CMA, positive band.  相似文献   

13.
14.
15.
Strains monosomic for chromosome I of Saccharomyces cerevisiae contain 25 to 35% fewer rRNA genes than do normal diploid strains. When these strains are repeatedly subcultured, colonies are isolated that have magnified their number of rRNA genes to the diploid amount while remaining monosomic for chromosome I. We have determined the amount of DNA complementary to rRNA in viable haploid spores derived from a magnified monosomic strain. Some of these haploids contained 24 to 48% more rRNA genes than a normal euploid strain. These extra genes may be responsible for the increased number of rRNA genes in the strain monosomic for chromosome I. Genetic analysis of the haploids containing extra rRNA genes suggested that these genes are linked to chromosomal DNA and are heterozygous. They were not closely linked to any centromere and were not located on chromosome I. Furthermore, all the DNA complementary to rRNA in one of these haploid strains with magnified rRNA genes sedimented at a chromosomal molecular weight, consistent with chromosomal linkage. In addition, several new mutations mapping on chromosome I were used to show that ribosomal DNA magnification was not due to a chromosome I duplication.  相似文献   

16.
Macronuclei of Tetrahymena pyriformis contain approximately 200 copies of the genes for 25S and 17S ribosomal RNA (rRNA) per haploid genome. Micronuclei, however, contain only a few copies of the rRNA genes per haploid complement. Since macronuclei develop from, products of meiosis, fertilization and division of micronuclei, we suggested that the multiple copies of the rRNA genes in macronuclei are generated by amplification of the small number of genes in micronuclei (Yao et al., 1974). This process provides a simple mechanism for maintaining the homogeneity of the repeated rRNA genes. To test if amplification is a general mechanism operating on all repeated genes in Tetrahymena, we have examined the numbers of 5S RNA and tRNA genes in macro- and micronuclei. 5S RNA was purified by polyacrylamide gel electrophoresis and hybridized to saturation against macro- and micronuclear DNA. Approximately 0.013–0.014% of macronuclear DNA and about 0.009% of micronuclear DNA is complementary to 5S RNA. After correcting for the differences in the DNA sequence complexities between the two nuclei, we calculate that there are 300–350 5S genes per haploid macro- or micronuclear genome. From these data we conclude that there is little or no detectable amplification of the 5S genes in macronuclei relative to micronuclei. Similar studies using tRNA indicate that these genes are also highly repeated in both nuclei; about 800 genes are present per haploid genome. Thus, amplification from a small number of genes can be excluded as the mechanism for generating the repeated copies of the 5S and tRNA genes in Tetrahymena and it is likely that another, as yet unidentified, mechanism operates to maintain the homogeneity of these genes.  相似文献   

17.
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.  相似文献   

18.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

19.
20.
The number of possible meiotic segregations of paternal and maternal chromosomes is 2N (N = haploid chromosome number). In eutherian Mammals, where large variations of N exist, 2N may be very different in related species, genes, or families. For instance, in Cercopithecidae, species with the highest value (N = 36) make 2(15) = 32,768 more gametic chromosome combinations than those with the lowest value (N = 21). It is also shown that the number of chiasmata varies from species to species and is proportional to the haploid number of arms NF/2 of the karyotype. Thus, increase or decrease of both N and NF/2, often concomitant, both increase or decrease genetic mixing. The chromosomal phylogeny of Primates, Carnivora and Rodentia shows that pure dichotomic evolution is rare, at contrast with populational (non dichotomic) evolution which seems most frequent. In these Mammals, the few examples of dichotomic evolution are observed in groups with low values of N and NF/2. It is concluded that dichotomic evolution, which should be favoured by the transmission of groups of linked mutant alleles, is prevented, in most instances, by the high recombination rate in karyotypes with high values of N and NF/2. Thus the mode of speciation would depend on karyotype modifications by long term effects on population genetics, in addition to the immediate effects of gametic barriers due to chromosomal rearrangements in the heterozygous state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号