首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three‐day rearing experiments were conducted to study the effect of turbulence on the feeding intensity and survival of pelagic larvae of Japanese flounder Paralichthys olivaceus. Four levels of turbulence as control (10?7·2 m2 s?3), low (10?6·2 m2 s?3), mid (10?5·6 m2 s?3) and high (10?5·0 m2 s?3) were set by changing the flow rate of water pumped through pipes set on the bottom of the tanks. In B‐stage larvae, defined as having buds of elongated dorsal fin rays, the feeding intensity and growth were higher in the low and mid turbulence levels, while survival was highest in the control level. Most of the larvae surviving in the control level, however, were judged to be in a seriously starved condition leading to subsequent high mortality. Because the three‐day span of the rearing experiments was thought to be a little shorter than the periods before starvation‐induced, high mortality occurs. In contrast, for D‐stage larvae, their feeding and growth were optimal in the control and low levels. Feeding was more adversely affected in the high level for D‐stage larvae compared with B‐stage larvae. This is probably due to the compressed body shape and elongated dorsal fin rays of D‐stage larvae, which may be more strongly affected by turbulence and, as a consequence, the larval feeding behaviour such as pursuit and capture of prey organisms becomes less efficient than in lower turbulence. Considering the vertical distribution of B and D‐stage larvae in the oceanic water column, the optimum turbulence level range found in the present study corresponded to a wind speed of 7–10 m s?1. Therefore, moderate weather conditions of this wind speed range are considered to potentially enhance survival of early larval stages of P. olivaceus.  相似文献   

2.
3.
Photosynthetic activity (PA) and growth of different microalgae species (Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii) depends in addition to other factors on mixing (tip speed) and shear stress (friction velocity) and was studied in a stirring tank (microcosm). In order to detect cause–effect relationships for an increase in photosynthetic activity, experiments were conducted under different pH values (6.0–8.5) and CO2 concentrations (0.038 and 4 % (v/v)). The PA was determined as the effective quantum yield by pulse amplitude modulation during a stepwise increase of the tip speed from 0 to 589 cm s?1 (friction velocity: 0–6.05 cm s?1) in short-term experiments. The increase caused a distinctive pattern of PA of each species. Compared to 0 cm s?1, C. vulgaris and S. obliquus showed a 4.0 and 4.8 % higher PA at the optimum tip speed of 126 cm s?1 (friction velocity of 2.09 cm s?1) and a 48 and 71 % higher growth, respectively. At 203 cm s?1, the PA dropped to the value of the unstirred control, while at 589 cm s?1, the PA decreased of up to 7 and 8 %. In contrast, C. reinhardtii showed 7 % stronger growth at 126 cm s?1, while the PA decreased about 15 % at an increase of tip speed to 589 cm s?1. For all investigated microalgae, the pattern of PA and higher growth was not only explained by the main contributing factors like light supply, nutrient supply, and overcoming diffusion gradients. The results indicate that hydrodynamic forces have a stimulating effect on the physiological processes within the cells.  相似文献   

4.
For conservation purposes, and to supply critically endangered insects for laboratory use, a system for artificial breeding is crucial. However, in the case of carnivorous insects such as diving beetles, the larvae must be isolated because they are cannibalistic. We developed a method for mass breeding the larvae of two diving beetles, Dytiscus sharpi sharpi (Wehncke) and Dytiscus sharpi validus (Régimbart) (Coleoptera: Dytiscidae), which are designated critically endangered species in Japan. Ten to twenty larvae were raised in a small tank (35 cm × 25 cm × 10 cm; water depth 7 cm) with Rana ornativentris (Werner) tadpoles as prey. At low prey density, ~80 % of the larvae were cannibalized. At moderate prey density, 50–60 % were cannibalized. However, at high prey density, <3 % were cannibalized. Well-fed mass-bred adults were larger than individually bred and field-collected adults. This mass breeding method can be used for the conservation and breeding of these rare diving beetles in a manageable number of aquaria.  相似文献   

5.
Relatively little is known about the role of turbulence in a predator-prey system where the predator is a passive, pelagic forager. The Campanulariid hydroid Clytia gracilis (Cnidaria, Hydrozoa) is unusual because it occurs as planktonic colonies and is reported to forage passively in the water column on Georges Bank, Massachusetts, USA. In this study, we investigated the role of various turbulence conditions on the feeding rate of C. gracilis colonies in laboratory experiments. We found a positive relationship between turbulence velocities and feeding rates up to a turbulent energy dissipation rate of ca. 1 cm2 s− 3. Beyond this threshold feeding rate decreased slightly, indicating a dome-shaped relationship. Additionally, a negative relationship was found between feeding efficiency and hydroid colony size under lower turbulent velocities, but this trend was not significant under higher turbulence regimes.  相似文献   

6.
The effects of ontogeny (larval size), light and turbulence on the attack rate and swimming activity (proportion of time swimming and duration of swimming bout) of herring larvae (15-28 mm TL) have been investigated. Emphasis was put on the experimental design in order to create a set-up where the turbulence intensity distribution could be accurately measured as well as controlled in the entire experimental tank.Both larval size (ontogeny) and light had a significant positive effect on prey attack rate. Likewise, an intermediate increase in turbulence had a positive effect on prey attack rate, but this effect was dependent of light intensity and larval size.At low light (1.5 μE m2 s−1) intermediate turbulence increased the prey attack rate significantly for larger larvae (26 and 28 mm), while at high light (18 μE m2 s−1) intermediate turbulence had only a significant positive effect on the attack rate of smaller larvae 20 and 23 mm.In general, our data show a dome-shaped response of turbulence on attack rate and a U-shaped response of turbulence on swimming activity.For herring larvae >20 mm, the maximum (attack rate) and minimum (swimming activity) response of turbulence were found at intermediate turbulence intensities (energy dissipation rates between 7∗10−8 and 1∗10−6 W/kg). The highest turbulence level tested (8∗10−6 W/kg) showed only negative effects, as attack rates where at the lowest and swimming activity at the highest.Swimming activity increased with larval size or light, and decreased at intermediate turbulence. Compared to turbulent intensities under natural conditions this implies that larger herring larvae at 10 m depth have to be exposed to wind speeds of more than 17 m/s before negative effects on attack rate and swimming activity occurs.  相似文献   

7.
We estimated the grazing impact of the heterotrophic flagellate Collodictyon triciliatum on the harmful, bloom-forming cyanobacterium Microcystis aeruginosa in an experimental pond during a Microcystis bloom from summer to winter in 2010. For these experiments, we calculated the grazing rates from the digestion rate of C. triciliatum and its food vacuole contents. During the study period, M. aeruginosa exhibited one bloom event with a maximum density of 1.1 × 105 cells ml?1. The cell density of C. triciliatum fluctuated from below the detection limit to 291 cells ml?1. The number of M. aeruginosa cells ingested by C. triciliatum food vacuoles ranged between 0.4 and 10.8 cells flagellate?1, and the digestion rate of C. triciliatum at 25 °C was 0.73 % cell contents min?1. The grazing rate of C. triciliatum on the M. aeruginosa prey was 0.2–6.9 cells flagellate?1 h?1, and its grazing impact was 0.0–25.3 % standing stock day?1. The functional response of C. triciliatum to the M. aeruginosa prey followed the Michaelis–Menten model of significance (r 2 = 0.873, p < 0.001) in our experimental systems, in which the prey concentration varied from 1.0 × 104 to 2.1 × 106 cells ml?1. The maximum grazing rate was 6.2 prey cells grazer?1 h?1, and the half-saturation constant was 1.2 × 105 cells ml?1. We present evidence that C. triciliatum grazing explained the remarkable decrease in M. aeruginosa cell density in the pond. The present study is the first demonstration of the high potential of protistan grazing on M. aeruginosa to reduce cyanobacterial blooms.  相似文献   

8.
The gut contents of Sagitta elegans were sampled twice daily(noon and midnight) during 9 days in October at an anchor stationin the northern North Sea. Observations of the ambient preyfield and of turbulent dissipation rates were collected simultaneously.The average number of prey per chaetognath was among the highestever recorded, 0.57 ± 0.10. Total gut content was independentof ambient prey concentration, suggesting that feeding ratewas saturated. Clearance rates were estimated from gut contentsand ambient prey concentrations and a literature-based estimateof digestion time. The clearance rate to prey size showed adome-shaped relationship. The maximum clearance rates, about100–300 ml h-1, were observed for prey sizes correspondingto 6–10% of Sagitta length. Clearance rates varied notonly with prey size, but also with prey type. For example, copepodmales were cleared at rates up to an order of magnitude higherthan similarly sized females, probably owing to differencesin swimming behaviour. Sagitta elegans is an ambush predatorthat perceives its prey by hydromechanical signals. Faster swimmingprey generates stronger signals and is, hence, perceived atlonger distances. We develop a simple prey encounter rate modelby describing the swimming prey as a ‘force dipole’and assuming that a critical signal strength is required toelicit an attack. By fitting the model to the observations,a critical signal strength of 10-2 cm s-1 is estimated; thisis very similar to estimates for copepods that also perceiveprey by mechanoreceptory setae. Gut contents were independentof turbulent dissipation rate. Because feeding rates were saturated,we did not expect to see positive effects of turbulence. However,the strong wind-generated turbulent dissipation rates observedduring the study (10-3–10-1 cm2 s-3 in the upper mixedlayer) could lead to negative effects by interfering with preyperception. At a dissipation rate of 10-2 cm2 s-3 a 10-mm longS. elegans would experience fluid signals of order 0.3 cm s-1due to turbulence, 30 times stronger than the signal strengthfrom the prey. It is, therefore, suggested that S. elegans isable to separate prey signals from turbulence signals due totheir different spatial characteristics.  相似文献   

9.
To identify the mechanisms whereby substrate embeddedness and water velocity influence Nooksack dace (Rhinichthys cataractae subsp. cataractae) prey capture efficiency, we stocked dace in foraging arenas with varying substrate types over a range of velocities (0, 25, 35 cm s?1) and measured their efficiency of prey capture. We stocked a known number of mayfly (Ephemeroptera), black fly (Simuliidae), and chironomid (Chironomidae) larvae in each foraging arena and measured the number of invertebrates remaining after 12 h. Foraging efficiency for mayflies was significantly reduced over unembedded substrate, and capture efficiency for all taxa decreased at higher velocities in all substrate treatments. Decreased foraging efficiency indicates that higher velocities may degrade the accuracy of prey strikes, that dace may alter their foraging behavior to reduce energy expenditures at higher velocities, that there is less available foraging habitat within their velocity tolerances, or that invertebrates become more interstitial at higher velocities. Although it is difficult to unambiguously discriminate among these mechanisms with our experimental design, our results suggest that dace are adapted to foraging in low-velocity micro-habitats within the boundary layer, and that their foraging efficiency may be sensitive to both the refuging ability of their prey and velocity and turbulence at their focal point.  相似文献   

10.
The critical shear stress of resuspension and rates of erosion for cohesive and loosely structured sediments must be obtained by direct measurements since there is no theoretical calculation. An in situ experiment on sediment resuspension was performed in a shallow lake (Langer See, NE Germany; area = 1.27 km2, zmax = 3.8 m) in summer 2006 using a hydrodynamically calibrated erosion chamber (Ø 20 cm). Shear velocity (u*) was incrementally increased in 11 steps (0–2.19 cm s?1) to initiate resuspension events. Entrainment rates (E) of suspended particulate matter (ESPM), total P (ETP), chlorophyll a (EChl a), and soluble reactive P (ESRP) were determined by mass balance. Two subsequent critical u* (0.53 cm s?1 and 1.48 cm s?1) support the ‘two-layered bed’ model of a fluffy surface aggregate layer (freshly deposited phytodetritus prone to resuspension) and an underlying more consolidated biostabilised layer. Patterns in ESPM (2–106 g m?2 h?1), ETP (11–532 mg m?2 h?1), and EChl a (3–24 μg m?2 h?1) revealed a sediment surface maximum of TP and Chl a and their theoretical vertical logarithmic decrease within 4 mm sediment depth, the maximum thickness of sediment layer entrained. The advective ESRP flux (17 mg m?2 h?1) was 43 times higher than the diffusive SRP flux (0.4 mg m?2 h?1). The TP and Chl a micro-profiles suggest that cohesive sediment bed formation is a function of both settling (fluff) and consolidation (biostabilisation). Thus, sediment microstructure and resuspension behavior depend on each other.  相似文献   

11.
The functional response of the predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) feeding on its prey, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was studied in a greenhouse compartment. Each cage enclosed three soybean plants plus two, four, six, eight, 10, 12 or 14 prey larvae. One adult predator was released and kept inside the cages for 24h. The predation rate of adult male P. nigrispinus was highest at densities of eight or more A. gemmatalis larvae with a handling time of 5.76h and an attack rate of 0.68h?1. Adult females had higher predation rates on plants with 10 or more A. gemmatalis larvae, with a handling time of 3.84h and an attack rate of 0.65h?1. The maximum number of larvae consumed by males and females of this predator were 4.1 and 6.0 per day, respectively, in groups of three plants. The results suggest that P. nigrispinus may be used in biological control programmes against A. gemmatalis in soybean fields.  相似文献   

12.
Hemimysis anomala is a near-shore mysid native to the Ponto-Caspian region that was discovered to have invaded Great Lakes ecosystems in 2006. We investigated feeding rates and prey preferences of adult and juvenile Hemimysis in laboratory experiments to gain insight on the potential for Hemimysis to disrupt food webs. For both age groups (AGs), we measured feeding rates as a function of prey abundance (Bosmina longirostris as prey), prey type (B. longirostris, Daphnia pulex, and Mesocyclops sp.), and light levels (no light and dim light). Mean feeding rates on Bosmina increased with prey density and reached 23 ind. (2 h)?1 for adults and 17 ind. (2 h)?1 for juveniles. Dim light had little effect on prey selection or feeding rate compared to complete darkness. When feeding rates on alternate prey were compared, both AGs fed at higher rates on Bosmina than Daphnia, but only juveniles fed at significantly higher rates on Bosmina relative to Mesocyclops. No significant differences were observed between feeding rates on Mesocyclops and on Daphnia. Hemimysis feeding rates were on the order of 30–60% of their body weight per day, similar to predatory cladocerans that have been implicated in zooplankton declines in Lakes Huron and Ontario.  相似文献   

13.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

14.
Predation is a strong driver of population dynamics and community structure and it is essential to reliably quantify and predict predation impacts on prey populations in a changing thermal landscape. Here, we used comparative functional response analyses to assess how predator-prey interactions between dogfish and invertebrate prey change under different warming scenarios. The Functional Response Type, attack rate, handling time and maximum feeding rate estimates were calculated for Scyliorhinus canicula preying upon Echinogammarus marinus under temperatures of 11.3 °C and 16.3 °C, which represent both the potential daily variation and predicted higher summer temperatures within Strangford Lough, N. Ireland. A two x two design of “Predator Acclimated”, “Prey Acclimated”, “Both Acclimated”, and “Both Unacclimated” was implemented to test functional responses to temperature rise. Attack rate was higher at 11.3 °C than at 16.3 °C, but handling time was lower and maximum feeding rates were higher at 16.3 °C. Non-acclimated predators had similar maximum feeding rate towards non-acclimated and acclimated prey, whereas acclimated predators had significantly higher maximum feeding rates towards acclimated prey as compared to non-acclimated prey. Results suggests that the predator attack rate is decreased by increasing temperature but when both predator and prey are acclimated the shorter handling times considerably increase predator impact. The functional response of the fish changed from Type II to Type III with an increase in temperature, except when only the prey were acclimated. This change from population destabilizing Type II to more stabilizing Type III could confer protection to prey at low densities but increase the maximum feeding rate by Scyliorhinus canicula in the future. However, predator movement between different thermal regimes may maintain a Type II response, albeit with a lower maximum feeding rate. This has implications for the way the increasing population Scyliorhinus canicula in the Irish Sea may exploit valuable fisheries stocks in the future.  相似文献   

15.
Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100 % mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 106 conidia ml?1. Its LC50 was 3 × 105 conidia ml?1, and the lethal time (LT50) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100 % identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 109 conidia ml?1. P. citrinum CM-010 at 1 × 106 conidia ml?1 killed 100 % larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml?1 required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.  相似文献   

16.
The effect of temperature on the functional response of female adults of the two-spot ladybird, Adalia bipunctata L. (Coleoptera: Coccinellidae) was examined in petri dish arenas containing sweet pepper leaves infested with different densities of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The predator showed a type II functional response at three tested temperatures ranging from 19°C to 27°C. The theoretical maximum number of prey captured by the predator increased with temperature. Based on the random predator equation, the estimated attack rates ranged from 0.13 h?1 at 19°C to 0.35 h?1 at 27°C on a leaf area of 20–25 cm2. There was no significant difference between the attack rates of the predator at 23°C and 27°C. Handling time significantly decreased as temperature increased from 19°C (0.39 h) to 27°C (0.24 h). This study shows that A. bipunctata displays high predation rates on M. persicae for a wide range of temperatures, indicating its potential for augmentative releases against this aphid pest. The limitations of the predictions generated by functional response experiments are discussed.  相似文献   

17.
Bacteria associated with plankton are of importance in marine bioinvasions and the implementation of ship’s ballast water treatment technologies. In this study, epibiotic and endobiotic bacteria associated with zooplankton, including barnacle nauplii, veliger larvae, and adults of the copepod Oithona sp., were characterized and quantified. Barnacle nauplius and veliger larva harbored ~4.4 × 10cells ind?1 whereas Oithona sp. had 8.8 × 10cells ind?1. Computation of bacterial contribution based on biovolume indicated that despite being the smallest zooplankton tested, veliger larvae harbored the highest number of bacteria, while barnacle nauplii, the largest of the zooplankton, tested in terms of volume contributed the least. Pulverization of zooplankton led to an increase in bacterial numbers; for example, Vibrio cholerae, which was initially 3.5 × 103, increased to 5.4 × 10CFU g?1; Escherichia coli increased from 5.0 × 102 to 1.3 × 10CFU g?1; and Streptococcus faecalis increased from 2.1 × 102 to 2.5 × 10CFU g?1, respectively. Pulverized zooplankton was aged in the dark to assess the contribution of bacteria from decaying debris. Aging of pulverized zooplankton led to emergence of Chromobacterium violaceum, which is an opportunistic pathogen in animals and humans.  相似文献   

18.
Neodiprion zhejiangenis Zhou &; Xiao 1981 (Hymenoptera: Diprionidae) nuclear polyhedrosis virus (NezhNPV) is a biocontrol factor with high development potential and application prospects. To study the insecticidal activity of NezhNPV against the larvae of N. zhejiangenis, the susceptibility of larvae at different instars to different NezhNPV concentrations was determined based on laboratory bioactivity. At 2.0?×?107 polyhedron inclusion body (PIB)/mL, the median lethal time required to kill 50% of the instar 2 and 3 larvae was approximately 5 d, whereas the median lethal time of the instar 4 and 5 larvae was 8–9 d. Interestingly, at the NezhNPV concentrations of 2.0?×?103 and 2.0?×?104 PIB/mL, the feeding ability of the surviving larvae was decreased by 57.4% and 76.4%, respectively, compared with the controls; the pupal weight at both concentrations was decreased by approximately 27%, and the adult emergence rate was decreased by 27.4% and 50.9%, respectively, with a significantly higher proportion of males than of females. The results showed that younger instar larvae of N. zhejiangenis were more susceptible to NezhNPV infection than older instar larvae. The larval mortality rate was dependent on the larval instar and NezhNPV concentration.  相似文献   

19.
Stormwater detention ponds are widely utilized as control structures to manage runoff during storm events. These ponds also represent biogeochemical hotspots, where carbon (C) and nutrients can be processed and buried in sediments. This study quantified C and nutrient [nitrogen (N) and phosphorus (P)] sources and burial rates in 14 stormwater detention ponds representative of typical residential development in coastal South Carolina. Bulk sediment accumulation was directly correlated with catchment impervious surface coverage (R2 = 0.90) with sediment accumulation rates ranging from 0.06 to 0.50 cm y?1. These rates of sediment accumulation and consequent pond volume loss were lower than anticipated based on maintenance guidelines provided by the State. N-alkanes were used as biomarkers of sediment source; the derived terrestrial aquatic ratio (TARHC) index was strongly correlated with sediment accumulation rate (R2 = 0.71) which, in conjunction with high C/N ratios (16–33), suggests that terrestrial biomass drives this sediment accumulation, with relatively minimal contributions from algal derived material. This is counter to expectations that were based on the high algal productivity generally observed in stormwater ponds and previous studies of natural lakes. Sediment C and nutrient concentrations were consistent among ponds, such that differences in burial rates were a simple function of bulk sediment accumulation rate. These burial rates (C: 8.7–161 g m?2 y?1, N: 0.65–6.4 g m?2 y?1, P: 0.238–4.13 g m?2 y?1) were similar to those observed in natural lake systems, but lower than those observed in reservoirs or impoundments. Though individual ponds were small in area (930–41,000 m2), they are regionally abundant and, when mean burial rates are extrapolated to the regional scale (≈ 21,000 ponds), ultimately sequester 2.0 × 109 g C y?1, 9.5 × 107 g N y?1, and 3.7 × 107 g P y?1 in the coastal region of South Carolina alone. Stormwater ponds represent a relatively new but increasingly significant feature of the coastal landscape and, thus, are a key component in understanding how urbanization alters the transport and transformations of C and nutrients between terrestrial uplands and downstream receiving waters.  相似文献   

20.
This work investigates the effect of flow rate variation on mass transfer and on the development of Escherichia coli biofilms on a flow cell reactor under turbulent flow conditions. Computational fluid dynamics (CFD) was used to assess the applicability of this reactor for the simulation of industrial and biomedical biofilms and the numerical results were validated by streak photography. Two flow rates of 374 and 242 L h?1 (corresponding to Reynolds numbers of 6,720 and 4,350) were tested and wall shear stresses between 0.183 and 0.511 Pa were predicted in the flow cell reactor. External mass transfer coefficients of 1.38 × 10?5 and 9.64 × 10?6 m s?1 were obtained for the higher and lower flow rates, respectively. Biofilm formation was favored at the lowest flow rate because shear stress effects were more important than mass transfer limitations. This flow cell reactor generates wall shear stresses that are similar to those found in some industrial and biomedical settings, thus it is likely that the results obtained on this work can be used in the development of biofilm control strategies in both scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号