首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 1017 Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.  相似文献   

2.
Natural and human‐made disasters such as floods and logging occur in and around rivers. Stream‐dwelling aquatic insects respond to these disturbances in various ways. Primary consumers among them rely greatly on algae and leaf litter from riparian vegetation as food. Therefore, once a disturbance such as a flood has occurred, insects may find it difficult to find food in a stream, and the aquatic insect assemblage can be impacted greatly as a result. Disturbances in riparian areas also increase fine sediment loads into streams, damaging habitat and altering the aquatic insect assemblage. Deforestation impacts not only terrestrial but also aquatic animals. In this review paper, aquatic insect assemblages are assessed according to alterations in land use in and around streams. Following this paper, it is expected that clarification of aquatic insect fauna and their life cycles will progress and that the distribution and habitat use of aquatic insects will be afforded greater attention in forest management.  相似文献   

3.
Benthic substrates constitute an important habitat template for aquatic communities and may affect the contributions of benthic organisms to ecological processes. To test the effects of ambient substrate composition on the process of algae accrual and removal, we conducted an experiment to examine how substrate type influenced consumer richness effects. We hypothesized that algal removal from focal substrates (ceramic tiles) would be influenced by the surrounding ambient substrate through its effect on nutrient cycling and subsequent algal growth. We manipulated consumer richness in mesocosms at one or three species while holding consumer biomass constant. Aquatic consumers were an amphipod, a snail, and a water boatman, and ambient substrates were either sand or gravel. After 21 days, ambient substrate influenced epilithic algal accrual on tiles, affected physio-chemical parameters within mesocosms, and modified consumer behavior. Chlorophyll a was approximately 2× greater on control tiles surrounded by sand, and FPOM and turbidity were greater on sand than gravel when consumers were present. Substrate modified consumer behavior such that consumers congregated around focal substrates in sand, but dispersed around them in gravel. Consumers also had substrate-specific influences on epilithic chlorophyll, causing a decrease in sand and an increase in gravel. Algal assemblages on focal tiles were dominated by diatoms, and their composition responded to consumer richness and identity, but not substrate. Our data suggest that direct effects (e.g., consumptive removal of epilithon from focal tiles) were more pronounced in sand, whereas indirect effects (e.g., bioturbation and enhanced mixing) promoted algal accrual in gravel. These results show that algae production on exposed surfaces may change as underlying substrate composition changes, and that substrate type can alter consumer diversity effects on algal removal.  相似文献   

4.
To understand the relationship between the radioactive cesium (Cs) concentration in muscle of Japanese flounder Paralichthys olivaceus and the species' biological characteristics (size, sex, and age) under conditions of ecological equilibrium (i.e., distributed among ecosystem components over sufficient time, and with nearly constant ratios of Cs concentration in organisms to the concentration in water) as existed before the accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS), Japan, in 2011, we examined stable Cs, as it is thought to exist in equilibrium in the environment and behave similarly to radioactive Cs in aquatic animals. The concentration of stable Cs in 241 P. olivaceus (range 216–782 mm total length [TL]) collected in Sendai Bay, approximately 90 km north of the FDNPS, in June–July 2015 was expressed as an exponential function with size as an independent variable; the results show the concentration of stable Cs doubled with an increase in TL of 442 mm. Next, to evaluate the cause of the size-dependent change in stable Cs concentration, we examined 909 individuals (200–770 mm TL) collected in September 2013–July 2015 to determine their feeding habit based on size. Analysis of the frequency of occurrence of prey organisms in stomach contents showed that sand lance Ammodytes japonicus (55–180 mm standard length [SL]) was the most consistently consumed across size classes. Analysis on a wet-mass basis showed that A. japonicus and anchovy Engraulis japonicus (65–130 mm SL) were the main food of P. olivaceus sized 200–599 mm TL, whereas chub mackerel Scomber japonicus (120–230 mm SL) and two species of flatfishes (180–205 mm SL) were abundant in the diet of P. olivaceus sized ≥600 mm TL. All these prey items were presumed to have similar concentrations of stable Cs. Based on the above, the effect of diet on the relationship between stable Cs in muscle and fish size was considered negligible. That the diet of P. olivaceus largely did not change with size was also confirmed by C and N stable isotope ratios in P. olivaceus and their prey species. Therefore, the Cs–size relationship is probably determined by changes in the balance between the rate of Cs intake from food and seawater and the excretion rate during growth, both of which change as functions of body mass. Values of stable Cs concentrations among environmental components and animals appear to be a valid indicator for understanding the radioactive Cs distribution in the marine environment and aquatic animals under the equilibrium state, as existed before the 2011 nuclear accident.  相似文献   

5.
Jeff Scott Wesner 《Oikos》2010,119(1):170-178
Research over the past decade has established spatial resource subsidies as important determinants of food web dynamics. However, most empirical studies have considered the role of subsidies only in terms of magnitude, ignoring an important property of subsidies that may affect their impact in recipient food webs: the trophic structure of the subsidy relative to in situ resources. This may be especially important when subsidies are composed of organisms, as opposed to nutrient subsidies, because the trophic position of subsidy organisms may differ from in situ prey. I explored the relative magnitude and trophic structure of a cross-habitat prey subsidy, adult aquatic insects, in terrestrial habitats along three streams in the south–central United States. Overall, adult aquatic insects contributed more than one-third of potential insect prey abundance and biomass to the terrestrial habitat. This contribution peaked along a permanent spring stream, reaching as high as 94% of abundance and 86% of biomass in winter. Trophic structure of adult aquatic and terrestrial insects differed. Nearly all adult aquatic insects were non-consumers as adults, whereas all but one taxon of terrestrial insects were consumers. Such a difference created a strong relationship between the relative contribution of the prey subsidy and the trophic structure of the prey assemblage: as the proportion of adult aquatic insects increased, the proportion of consumers in the prey assemblage declined. Specific effects varied seasonally and with distance from the stream as the taxonomic composition of the subsidy changed, but general patterns were consistent. These findings show that adult aquatic insect subsidies to riparian food webs not only elevate prey availability, but also alter the trophic structure of the entire winged insect prey assemblage.  相似文献   

6.
Adult aquatic insects emerging from streams are a fundamental resource sustaining riparian bird communities in broad-leaved deciduous forests. We investigated how stream geomorphology affects the aquatic insect flux and insectivorous bird abundance in 26 riparian-forest plots during spring season in northern Japan. Lateral dispersal of emergent aquatic insects into the riparian forest exponentially decreased with distance from the stream. Similar to aquatic insect distribution, flycatchers and gleaners concentrated their foraging attacks around the stream channel, preying intensively upon emergent aquatic insects. In contrast, bark probers consumed fewer emergent aquatic insects. The abundance of flycatchers and gleaners was closely related to stream geomorphology, whereas that of bark probers was associated with snag density in the study plots. A path analysis showed that the study plots with longer stream channels had greater aquatic insect abundance. This can be interpreted as a consequence of the increased amount of both stream edge and stream surface, where emergent aquatic insects readily penetrate. The increased flux of aquatic insects by stream meanders elevated gleaner abundance in the study plots. In addition, their abundance was directly affected by stream length per se. On the other hand, flycatcher abundance was only directly affected by stream length. Flycatchers, which mainly consumed emergent aquatic insects in the air, may have increased in response to the increase in suitable foraging sites (i.e., open spaces adjacent to perches) accompanying longer stream channels. Although the causal links affecting bird abundance differed among guilds, meandering streams apparently support abundant insectivorous birds in riparian forests. Therefore, to conserve riparian bird communities, it will be necessary to maintain the functions of stream geomorphology that affect the magnitude of energy transfer across the forest-stream interface.  相似文献   

7.
Permanent meiofauna taxa and portions of the population of other invertebrates that are temporarily in the meiofauna size class are often precluded from stream studies and assessments. This study was designed to determine the identity, density, and distribution of major meiofauna taxa relative to substrate size in a set of similar headwater streams. Using a coring technique, meiofauna (80 μm–1 mm) and substrate samples were collected from 11 Ozark headwater streams in the Boston Mountain ecoregion of Arkansas, USA. Mean meiofauna density among streams was 1739 ± 436 organisms per l. Permanent meiofauna taxa (Copepoda, Cladocera, Ostracoda, Rotifera, Nematoda, Hydrachnida, and Tardigrada) comprised 22.5% of the organisms collected with a mean density of 394 ± 233 organisms per l; temporary meiofauna taxa (Oligochaeta, Turbellaria, Hydroidea, Chironomidae, Ephemeroptera, and other insects) comprised the remainder with a density of 1346 ± 308 organisms per l. Chironomidae was the most numerous temporary meiofauna taxon, and Hydrachnida was the most numerous permanent taxon. Streams were found to differ significantly in substrate composition and densities of major taxonomic categories. Substrate size was found to predict densities for most of these taxonomic categories. Meiofauna patchiness was reflected in high variability within streams. Canonical correspondence analysis revealed positive associations between Copepoda and Nematoda and silt, and between Copepoda, Nematoda, and Rotifera and fine sand. Hydrachnida and Rotifera were negatively associated with silt and coarse sand, respectively. The potential value of inclusion of meiofauna in stream environmental assessments is discussed.  相似文献   

8.
The food and feeding habits of riparian ground beetles were studied in four alpine floodplains (Bavaria, Germany): a 5th-order stream (the Isar) and three 3rd-order streams. The riparian fauna along the streams mainly consists of predaceous species. Riparian ground beetle densities were much higher along the Isar than along the small streams. Aquatic invertebrates composed 89% of the potential prey for carnivorous terrestrial insects along the Isar. Besides aquatic organisms washed ashore, stoneflies emerging on land are of considerable importance as potential prey for terrestrial predators. In contrast, only 34% of the potential prey organisms collected along the small streams were of aquatic origin. Food abundance was 9 times higher in the shore region of the Isar compared to the small streams. Surface drift in the Isar, a potentially important food source for riparian organisms, was about 106 organisms and exuviae per meter stream width in 24 h. The drift density in the Isar was 59 times higher than that in a small stream. Terrestrial organisms provided only 3% of the drifting particles in the Isar, but 50% in the small stream. Gut content analysis reveals, that riparian ground beetles in the Isar floodplain mainly feed on aquatic organisms washed ashore or emerging on land. While small Bembidion species prefer chironomids (larvae and adults) the larger species Nebria picicornis feeds on emerging stoneflies, terrestrial riparian organisms and aquatic organisms accumulating along the shoreline. The prey of riparian ground beetles in the floodplain of the three small streams mainly consists of terrestrial species some of which may have been washed ashore. Received: 2 September 1996 / Accepted: 26 February 1997  相似文献   

9.
1. We investigated the effect of moderate eutrophication on leaf litter decomposition and associated invertebrates in five reference and five eutrophied streams in central Portugal. Fungal parameters and litter N and P dynamics were followed in one pair of streams. Benthic invertebrate parameters that are considered useful in bioassessment were estimated in all streams. Finally, we evaluated the utility of decomposition as a tool to assess stream ecosystem functional integrity. 2. Decomposition of alder and oak leaves in coarse mesh bags was on average 2.3–2.7× faster in eutrophied than in reference streams. This was attributed to stimulation of fungal activity (fungal biomass accrual and sporulation of aquatic hyphomycetes) by dissolved nutrients. These effects were more pronounced for oak litter (lower quality substrate) than alder. N content of leaf litter did not differ between stream types, while P accrual was higher in the eutrophied than in the reference stream. Total invertebrate abundances and richness associated with oak litter, but not with alder, were higher in eutrophied streams. 3. We found only positive correlations between stream nutrients (DIN and SRP) and leaf litter decomposition rates in both fine and coarse mesh bags, associated sporulation rates of aquatic hyphomycetes and, in some cases, total invertebrate abundances and richness. 4. Some metrics based on benthic invertebrate community data (e.g. % shredders, % shredder taxa) were significantly lower in eutrophied than in reference streams, whereas the IBMWP index that is specifically designed for the Iberian peninsula classified all 10 streams in the highest possible class as having ‘very good’ ecological conditions. 5. Leaf litter decomposition was sufficiently sensitive to respond to low levels of eutrophication and could be a useful functional measure to complement assessment programmes based on structural parameters.  相似文献   

10.
在北方寒冷区,凋落物于秋季大量输入溪流,是水生生物越冬生存的关键.河床凋落物的堆积和组成会直接影响凋落叶分解等关键生态过程,但目前国内关于北方地区溪流河床凋落物分布特征的研究匮乏.在长白山地区一条源头溪流,采用原位取样的方法,探究了溪流河床凋落物的分布特征及季节动态.结果表明:深潭型凋落物斑块的堆积面积和水深显著大于浅...  相似文献   

11.
Adult aquatic insects emerging from streams can subsidize riparian food webs, but little is known of the spatial extent of these subsidies. Stable isotope (15N) enrichment of aquatic insects, principally a species of stonefly (Plecoptera: Leuctridae), emerging from an upland stream was used to trace the subsidy from the stream ecosystem to riparian spiders (Lycosidae). The downstream profile of spider δ15N correlated closely with that of adult stoneflies, indicating that they were deriving nutrition from aquatic sources. The contribution of adult aquatic insects to spider diets was determined using a two-source mixing model. Adult aquatic insects made up over 40% of spider diets adjacent to the stream, but <1% at 20 m from the stream. Enrichment of riparian spiders declined exponentially with distance from the stream channel. Aquatic-terrestrial subsidies were spatially restricted, but locally important, to riparian lycosid spiders at the study site.  相似文献   

12.
Phragmites australis (Common reed) occurs in the interface between water and land. The water depth gradient from deep water to dry land is inversely related to litter accumulation. Eutrophication can result in an excessive production of litter, which may have a large impact on the occurrence of P. australis in this gradient. In an outdoor pot experiment, it was investigated how water tables in combination with substrates containing variable amounts of litter affect morphology and productivity of P. australis. Vegetatively propagated P. australis was grown in pots filled with river sand, litter, and different mixtures of sand and litter (25, 50 and 75% by volume). Four water table treatments were applied; drained (–12 cm), waterlogged (0 cm), flooded (+12 cm), and weekly fluctuating drained and flooded conditions (–12/+12 cm of water relative to substrate level). When drained, no differences between substrate treatments were present. Waterlogging, flooding fluctuating water table treatments caused growth reduction in substrate containing litter. The plants formed short shoots and thin rhizomes. With increasing water table, allocation of dry matter to stems increased at the expense of leaves and rhizomes. At intermediate levels of litter in the substrate, allocation to leaves was lowest. In both instances a lower leaf weight ratio (LWR) was (partly) compensated for by a higher specific leaf area (SLA), resulting in less pronounced differences in leaf area ratio (LAR). Aquatic roots developed when plants were waterlogged or flooded, and increased when litter was present in the substrate. Aquatic roots were formed in the top soil layer when waterlogged. The percentage of aquatic roots increased with increasing amount of litter in the substrate when plants were flooded. It was concluded that the morphological responses of P. australis to litter strongly constrain its ability to maintain itself in deep water when the substrate contains litter. This might one of the explanations for the disappearance of P. australis along the waterward side of littoral zones.  相似文献   

13.
1. Aquatic resource fluxes from streams can provide significant subsidies for riparian consumers. Because aquatic resource fluxes can be highly variable in space and time, the subsidy efficiency (i.e. transfer to the recipient food web) is controlled by the short‐term aggregative response of riparian consumers. 2. Field manipulations of stream‐derived invertebrate prey subsidies were used to examine specific aggregative responses of ground‐dwelling arthropods to riverine subsidy pulses in a braided‐river (Tagliamento River, NE Italy). Subsidy manipulation comprised short‐term reductions of natural stream‐derived subsidies and increased subsidies of stream‐derived invertebrate prey during four seasons. 3. We hypothesised that specific aggregative responses of riparian arthropods depend on their specialisation on aquatic insects which was inferred from stable isotope analysis. Natural riverine subsidy sources including aquatic insect emergence and surface‐drifting organisms were quantified. 4. Arthropods responded significantly with a reduction in abundance by 51%, at reduced subsidies and an increase by 110% at increased subsidies, when averaged over all seasons. Different arthropod taxa responded differently to subsidy manipulations in relation to their specialisation on aquatic subsidies: ground beetles with a diet consisting predominantly of aquatic insects responded only to subsidy reductions, indicating that their local abundance was not limited by natural stream‐derived subsidies; lycosid spiders with a partly aquatic diet showed no significant response; and ants, although relying on a terrestrial diet, responded positively to added stream‐derived invertebrate prey, indicating that stranding of surface‐drifting terrestrial invertebrates represented an important subsidy pathway. 5. Ground beetles and lycosid spiders were seasonally separated in their use of aquatic subsidies. Results indicate that the life‐history characteristics of riparian consumers can control the subsidy efficiency for the recipient community. By the effective uptake of pulsed riverine‐derived subsidies, riparian arthropods can enhance the transfer of riverine food sources to the riparian food web.  相似文献   

14.
Microorganisms associated with decomposing deciduous leaf litter in a woodland stream were examined by scanning electron microscopy. The use of a critical point drying method allowed the preservation of a wide variety of microorganisms as well as the decomposing litter with a minimum of distortion. The micrographs provide evidence that the aquatic hyphomycetes are the major fungal flora present during decomposition. Two distinct groups of these fungi were found during the seasonal cycle with one group occurring only in the summer while the other occurred throughout the rest of the year. The presence of all developmental stages of these organisms in the environment is considered further evidence of their active role in the decomposition of litter.  相似文献   

15.
Decomposition of deciduous leaf litter in a woodland stream   总被引:1,自引:0,他引:1  
Microorganisms associated with decomposing deciduous leaf litter in a woodland stream were examined by scanning electron microscopy. The use of a critical point drying method allowed the preservation of a wide variety of microorganisms as well as the decomposing litter with a minimum of distortion. The micrographs provide evidence that the aquatic hyphomycetes are the major fungal flora present during decomposition. Two distinct groups of these fungi were found during the seasonal cycle with one group occurring only in the summer while the other occurred throughout the rest of the year. The presence of all developmental stages of these organisms in the environment is considered further evidence of their active role in the decomposition of litter.  相似文献   

16.
17.
Permethrin (0.5%) was applied to individual Lutz spruce, Picea x lutzii Little, to protect them from attack by spruce beetles, Dendroctonus rufipennis (Kirby). Residue levels were monitored in a freshwater stream above, adjacent to, and below the treatment site at intervals before, during, and after treatment. Maximum residue levels in the stream within the treatment site ranged from 0.05 +/- 0.01 ppb 5 h after treatment to 0.14 +/- 0.03 ppb 8-11 h after treatment, with a decrease to 0.02 +/- 0.01 ppb 14 h after treatment. Levels of permethrin in standing pools near the stream within the treatment site were 0.01 +/- 0.01 ppb. Numbers of drifting aquatic invertebrates increased 2-fold during treatment and 4-fold 3 h after treatment and declined to before spray numbers within 9 h. Terrestrial insects did not appear to respond to treatments because none was found in stream drift samples. Trout fry (Dolly Varden), aquatic insect larvae, and periphyton (attached algae) within and below the treatment site during and after treatment did not show signs of mortality compared with an upstream untreated control site.  相似文献   

18.
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis to examine (1) the relative importance of terrestrial and algal‐based food resources to shrimps and other consumers and determine (2) if the relative importance of these food resources changed along the stream continuum. We examined δ15N and δ13C signatures of leaves, algae, macrophytes, biofilm, insects, snails, fishes, and shrimps at three sites (300, 90, and 10 m elev.) along the Río Espíritu Santo, which drains the Caribbean National Forest, Puerto Rico. Isotope signatures of basal resources were distinct at all sites. Results of two‐source δ13C mixing models suggest that shrimps relied more on algal‐based carbon resources than terrestrially derived resources at all three sites along the continuum. This study supports other recent findings in tropical streams, demonstrating that algal‐based resources are very important to stream consumers, even in small forested headwater streams. This study also demonstrates the importance of doing assimilation‐based analysis (i.e., stable isotope or trophic basis of production) when studying food webs.  相似文献   

19.
The content of radionuclides 90Sr and 137Cs in higher aquatic plants of water objects within Chernobyl NPP exclusion zone has been analysed. Biodiversity of phytocenose was studied and species-indicators of radioactive contamination were revealed. The seasonal dynamics of radionuclide content in macrophytes was studied and the role of main aquatic plant clumps in processes of 137Cs and 90Sr distribution in abiotic component of biohydrocenose was demonstrated.  相似文献   

20.
Radioactive contamination of small birds (484 individuals, 44 species) was investigated in the Chernobyl zone (Ukraine) in 2003-2005. Values variation of 90Sr and of 137Cs activity concentration reached 3-4 orders of magnitude even in one site, and maximum values amounted to hundreds Bq/g at the central plots of the zone. The biggest contamination is appropriate to birds in breeding season and to settled species, whilst migrants are the "cleanest". Change of contamination within a year reflects seasonal and short-term changes in birds diet and in behaviour. During breeding season females have higher activity concentration of 90Sr, while on 137Cs accumulation sexual differences are absent. In other seasons radioactive contamination of male and female does not differ if they live in similar conditions and have similar migratory behavior. Young birds during fledging and just after, as a rule, have higher levels of 90Sr contamination than adults, and actually do not differ on 137Cs accumulation. On a set of own and published data, it was assumed, that in small birds the half-life period of 137Cs extraction amounts to 1-2 days, and 90Sr- 5-10 days, and dynamic equilibrium of the radionuclides turnover in organism is reached over 4-7 and 17-34 days, respectively, after the birds arrival on the contaminated site. Among 44 studied species, those who search invertebrates in soil top layer or forest litter (thrushes). have noticeably higher accumulation of 90Sr and of 137Cs. Specific differences of radionuclides accumulation for the rest birds were not revealed due to small sample sizes of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号