首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fecundity and body size are central fitness-related traits, and their intra-specific responses to environmental variation are receiving increasing attention in the context of climate change. Recent results from Greenland indicate that temporal and spatial variation in body size differences between sexes (sexual size dimorphism) may be widespread among wolf spider species and could be related to climate. Here, we tested whether variation in elevation affected body size of three wolf spider (Araneae: Lycosidae) species in low-Arctic Canada, whether the sexes differed in their response to the cline, and whether changes in local density influenced this relationship. We also tested whether fecundity changed with elevation in two of the species, independent of body size variation. We found a significant sex–elevation interaction for Pardosa lapponica: female size decreased more in response to elevation than that of males. Males and females of Pardosa uintana decreased significantly in size with elevation at a similar rate. Alopecosa aculeata males increased in body size along the gradient while females did not. Pardosa lapponica females, but not P. uintana females, showed significant reduction in fecundity in response to elevation. P. uintana showed significant decreases in body size with increases in its population density. Changes in temperature and potential resource availability along the elevational gradient are probably causing these species- and sex-specific responses. Further summer warming of the region may alleviate current constraints on growth and reproduction of these species although sex-specific responses may affect their population dynamics.  相似文献   

2.
Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species.  相似文献   

3.
Large herbivore consumption of forage is known to affect vegetation composition and thereby ecosystem functions. It is thus important to understand how diet composition arises as a mixture of individual variation in preferences and environmental drivers of availability, but few studies have quantified both. Based on 10 years of data on diet composition by aid of microhistological analysis for sheep kept at high and low population density, we analysed how both individual traits (sex, age, body mass, litter size) linked to preference and environmental variation (density, climate proxies) linked to forage availability affected proportional intake of herbs (high quality/low availability) and Avenella flexuosa (lower quality/high availability). Environmental factors affecting current forage availability such as population density and seasonal and annual variation in diet had the most marked impact on diet composition. Previous environment of sheep (switch between high and low population density) had no impact on diet, suggesting a comparably minor role of learning for density dependent diet selection. For individual traits, only the difference between lambs and ewes affected proportion of A. flexuosa, while body mass better predicted proportion of herbs in diet. Neither sex, body mass, litter size, ewe age nor mass of ewe affected diet composition of lambs, and there was no effect of age, body mass or litter size on diet composition of ewes. Our study highlights that diet composition arises from a combination of preferences being predicted by lamb and ewes’ age and/or body mass differences, and the immediate environment in terms of population density and proxies for vegetation development.  相似文献   

4.
Natural selection favors animals that evolve developmental and behavioral responses that buffer the negative effects of food restrictions. These buffering responses vary both between species and within species. Many studies have shown sex‐specific responses to environmental changes, usually in species with sexual size dimorphism (SSD), less found in species with weak or no SSD, which suggests that sizes of different sexes are experiencing different selections. However, previous studies usually investigated development and behavior separately, and the balanced situation where males and females of sexually dimorphic species respond in the same way to food restriction remains little known. Here, we investigated this in Phintelloides versicolor (Salticidae) that presents sexual dimorphism in color and shape but weak SSD. We examined whether food restriction induced the same responses in males and females in development duration, adult body size and weight, daily time allocated to foraging, and hunting. We found food restriction induced similar responses in both sexes: both exhibited longer development duration, smaller adult body size and weight, higher probability of staying outside nests and noticing prey immediately, and higher hunting success. However, there were sexual differences regardless of food condition: females showed faster development, smaller adult body size, higher probability of staying outside of nests, and higher hunting success. These indicated the differential selection on male and female sizes of P. versicolor could be under a balanced situation, where males and females show equal developmental and behavioral plasticity to environmental constraints.  相似文献   

5.
The sexes often differ in the reproductive trait limiting their fitness, an observation known as Bateman's principle. In many species, females are limited by their ability to produce eggs while males are limited by their ability to compete for and successfully fertilize those eggs. As well as promoting the evolution of sex-specific reproductive strategies, this difference may promote sex differences in other life-history traits due to their correlated effects. Sex differences in disease susceptibility and immune function are common. Two hypotheses based on Bateman's principle have been proposed to explain this pattern: that selection to prolong the period of egg production favors improved immune function in females, or that the expression of secondary sexual characteristics reduces immune function in males. Both hypotheses predict a relatively fixed pattern of reduced male immune function, at least in sexually mature individuals. An alternative hypothesis is that Bateman's principle does not dictate fixed patterns of reproductive investment, but favors phenotypically plastic reproductive strategies with males and females adaptively responding to variation in fitness-limiting resource availability. Under this hypothesis, neither sex is expected to possess intrinsically superior immune function, and immunological sex differences may vary in different environments. We demonstrate that sex-specific responses to experimental manipulation of fitness-limiting resources affects both the magnitude and direction of sex differences in immune function in Drosophila melanogaster. In the absence of sexual interactions and given abundant food, the immune function of adults was maximized in both sexes and there was no sex difference. Manipulation of food availability and sexual activity resulted in female-biased immune suppression when food was limited, and male-biased immune suppression when sexual activity was high and food was abundant. The immunological cost to males of increased sexual activity was found to be due in part to reduced time spent feeding. We suggest that for species similarly limited in their reproduction, phenotypic plasticity will be an important determinant of sex differences in immune function and other life-history traits.  相似文献   

6.
Reproductive tactics and migratory strategies in Pacific and Atlantic salmonines are inextricably linked through the effects of migration (or lack thereof) on age and size at maturity. In this review, we focus on the ecological and evolutionary patterns of freshwater maturation in salmonines, a key process resulting in the diversification of their life histories. We demonstrate that the energetics of maturation and reproduction provides a unifying theme for understanding both the proximate and ultimate causes of variation in reproductive schedules among species, populations, and the sexes. We use probabilistic maturation reaction norms to illustrate how variation in individual condition, in terms of body size, growth rate, and lipid storage, influences the timing of maturation. This useful framework integrates both genetic and environmental contributions to conditional strategies for maturation and, in doing so, demonstrates how flexible life histories can be both heritable and subject to strong environmental influences. We review evidence that the propensity for freshwater maturation in partially anadromous species is predictable across environmental gradients at geographic and local spatial scales. We note that growth is commonly associated with the propensity for freshwater maturation, but that life-history responses to changes in growth caused by temperature may be strikingly different than changes caused by differences in food availability. We conclude by exploring how contemporary management actions can constrain or promote the diversity of maturation phenotypes in Pacific and Atlantic salmonines and caution against underestimating the role of freshwater maturing forms in maintaining the resiliency of these iconic species.  相似文献   

7.
Sexes of dioecious species may have dimorphic responses to environmental variation due to differences in resource requirements and reproductive costs. We analyzed the effect of aridity/relative shrub cover, and vicinity to shrub patches on morpho-chemical traits of sexes of the dioecious perennial grass Poa ligularis in patchy arid ecosystems in northern-central Patagonia. We hypothesized that sexes of P. ligularis have dimorphic responses in morpho-chemical traits in relation to the environmental variation induced by aridity/relative shrub cover and vicinity to shrub patches. We selected seven sites across a gradient of increasing aridity and relative shrub cover. We randomly collected 5–10 P. ligularis plants per site registering the sex (female or male) and location with respect to shrub patches (shrub patch or inter-patch). For each plant, we assessed morpho-chemical traits (height of the vegetative tillers, length/dry weight/area of blades, specific blade area, nitrogen and soluble phenol concentration in blades). Sexes showed dimorphic responses in height of vegetative tillers, blade length, and blade area with respect to vicinity to shrub patches; and in variation of soluble phenolics in blades in relation to aridity/relative shrub cover. Responses in both sexes were opposite to those expected by aridity, highlighting the role of favorable environments induced by shrub canopies on dimorphic responses of sexes of P. ligularis. Resource-rich microsites associated with shrub canopies promoted increased plant performance of females with high reproductive costs while resource-poor open areas, favorable for pollen dispersal, induced improved chemical defenses of males. These results are consistent with the resource availability hypothesis.  相似文献   

8.
Teeth in Cervidae are permanent structures that are not replaceable or repairable; consequently their rate of wear, due to the grinding effect of food and dental attrition, affects their duration and can determine an animal''s lifespan. Tooth wear is also a useful indicator of accumulative life energy investment in intake and mastication and their interactions with diet. Little is known regarding how natural and sexual selection operate on dental structures within a species in contrasting environments and how these relate to life history traits to explain differences in population rates of tooth wear and longevity. We hypothesised that populations under harsh environmental conditions should be selected for more hypsodont teeth while sexual selection may maintain similar sex differences within different populations. We investigated the patterns of tooth wear in males and females of Iberian red deer (Cervus elaphus hispanicus) in Southern Spain and Scottish red deer (C. e. scoticus) across Scotland, that occur in very different environments, using 10343 samples from legal hunting activities. We found higher rates of both incisor and molar wear in the Spanish compared to Scottish populations. However, Scottish red deer had larger incisors at emergence than Iberian red deer, whilst molars emerged at a similar size in both populations and sexes. Iberian and Scottish males had earlier tooth depletion than females, in support of a similar sexual selection process in both populations. However, whilst average lifespan for Iberian males was 4 years shorter than that for Iberian females and Scottish males, Scottish males only showed a reduction of 1 year in average lifespan with respect to Scottish females. More worn molars were associated with larger mandibles in both populations, suggesting that higher intake and/or greater investment in food comminution may have favoured increased body growth, before later loss of tooth efficiency due to severe wear. These results illustrate how independent selection in both subspecies, that diverged 11,700 years BP, has resulted in the evolution of different longevity, although sexual selection has maintained a similar pattern of relative sex differences in tooth depletion. This study opens interesting questions on optimal allocation in life history trade-offs and the independent evolution of allopatric populations.  相似文献   

9.
Quantifying intraspecific variation in heat tolerance is critical to understand how species respond to climate change. In a previous study, we recorded variability in critical thermal maxima (CTmax) by 3 °C among populations of small Iberian lizard species, which could substantially influence predictions of climate-driven activity restriction. Here, we undertake experiments to examine whether we could reproduce similar levels of heat-tolerance variability in response to water deficit. We hypothesized that deprivation of drinking water should increase variability in CTmax between populations more than deprivation of food under the theoretical expectation that the variation of the more limiting resource must trigger stronger variation in physiological performance. We measured CTmax after manipulating availability of live prey and drinking water in two populations of an arid and a mesic lizard species from the Iberian Peninsula. We quantified a mean CTmax across all studied lizards of 44.2 °C ± 0.2 SE for the arid species and 41.7 °C ± 0.3 SE for the mesic species. Using multimodel inference, we found that water deprivation (combined with food supply) caused population differences in CTmax by 3 to 4 °C which were two to three times wider than population differences due to food deprivation (combined with water supply) or to food and water provision. To highlight the need for more thermo-hydroregulatory research, we examined bias in research effort towards thermal versus hydric environmental effects on heat tolerance through a systematic literature review. We show that environmental temperature has been used five times more frequently than precipitation in ecological studies of heat tolerance of terrestrial species. Studies linking thermal tolerance of ectotherms to the interplay of air temperature and water availability are needed in the face of projected increases in aridity and drought in the 21st century, because the balance of body temperature and water resources are functionally interlinked.  相似文献   

10.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

11.
1.?Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2.?Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3.?We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4.?The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex.  相似文献   

12.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

13.
Morphological and behavioral differences between sexes are commonplace throughout the animal kingdom. Body size is one of the most obvious sex differences frequently found in snakes. However, the developmental origins of size differences in many species, including snakes, are not well known. We examined post-natal variation in sexual size dimorphism in garter snakes Thamnophis sirtalis . The weights, body and tail lengths, and head sizes of male and female neonates born to mothers collected from ecologically dissimilar habitats on Beaver Island, Lake Michigan were compared. Sexual size dimorphism was prominent. Overall, males had significantly longer bodies and tails than females. Females were significantly heavier and had larger heads than male snakes. Maternal site affected head but not body measurements, perhaps due to differences in prey availability. The body condition of maternal females predicted neonatal body length. Significant litter variation suggests heritable variation in morphological traits possibly correlated with feeding success and survival.  相似文献   

14.
Råberg L  Stjernman M  Nilsson JA 《Oecologia》2005,145(3):496-503
In birds and mammals with sexual size dimorphism (SSD), the larger sex is typically more sensitive to adverse environmental conditions, such as food shortage, during ontogeny. However, some recent studies of altricial birds have found that the larger sex is less sensitive, apparently because large size renders an advantage in sibling competition. Still, this effect is not an inevitable outcome of sibling competition, because several studies of other species of altricial birds have found the traditional pattern. We investigated if the sexes differ in environmental sensitivity during ontogeny in the blue tit, a small altricial bird with c. 6% SSD in body mass (males larger than females). We performed a cross-fostering and brood size manipulation experiment during 2 years to investigate if the sexes were differently affected as regards body size (body mass, tarsus and wing length on day 14 after hatching) and pre-fledging survival. We also investigated if the relationship between body size and post-fledging survival differed between the sexes. Pre-fledging mortality was higher in enlarged than in reduced broods, representing poor and good environments, respectively, but the brood size manipulation did not affect the mortality rate of males and females differently. In both years, both males and females were smaller on day 14 after hatching in enlarged as compared to reduced broods. In one of the years, we also found significant Sex × Experiment interactions for body size, such that females were more affected by poor environmental conditions than that of males. Body size was positively correlated with post-fledging survival, but we found no interactive effects of sex and morphological traits on survival. We conclude that in the blue tit, females (the smaller sex) are more sensitive to adverse environmental conditions which, in our study, was manifest in terms of fledgling size. A review of published studies of sex differences in environmental sensitivity in sexually size-dimorphic altricial birds suggests that the smaller sex is more sensitive than the larger sex in species with large brood size and vice versa.  相似文献   

15.
Competition for food resources can result in spatial and dietary segregation among individuals from the same species. Few studies have looked at such segregations with the combined effect of sex and age in species with short foraging ranges. In this study we examined the 3D spatial use of the environment in a species with a limited foraging area. We equipped 26 little penguins (Eudyptula minor) of known age, sex, and breeding output with GPS (location) and accelerometer (body acceleration and dive depth) loggers. We obtained dietary niche information from the isotopic analysis of blood tissue. We controlled for confounding factors of foraging trip length and food availability by sampling adults at guard stage when parents usually make one-day trips. We observed a spatial segregation between old (>11 years old) and middle-aged penguins (between 5 and 11 years old) in the foraging area. Old penguins foraged closer to the shore, in shallower water. Despite observing age-specific spatial segregation, we found no differences in the diving effort and foraging efficiency between age classes and sexes. Birds appeared to target similar prey types, but showed age-specific variation in their isotopic niche width. We hypothesize that this age-specific segregation was primarily determined by a “cohort effect” that would lead individuals sharing a common life history (i.e. having fledged and dispersed around the same age) to forage preferentially together or to share similar foraging limitations.  相似文献   

16.
The degree and/or direction of sexual size dimorphism (SSD) varies considerably among species and among populations within species. Although this variation is in part genetically based, much of it is probably due to the sexes exhibiting differences in body size plasticity. Here, we use the hawkmoth, Manduca sexta, to test the hypothesis that moths reared on different diet qualities and at different temperatures will exhibit sex-specific body size plasticity. In addition, we explore the proximate mechanisms that potentially create sex-specific plasticity by examining three physiological variables known to regulate body size in this insect: the growth rate, the critical weight (which measures the cessation of juvenile hormone secretion from the corpora allata) and the interval to cessation of growth (ICG; which measures the time interval between the critical weight and the secretion of the ecdysteroids that regulate pupation and metamorphosis). We found that peak larval mass of males and females did not exhibit sex-specific plasticity in response to diet or temperature. However, the sexes did exhibit sex-specific plasticity in the mechanism that controls size; males and females exhibited sex-specific plasticity in the growth rate and the critical weight in response to both diet and temperature, whereas the ICG only exhibited sex-specific plasticity in response to diet. Our results suggest it is important for the sexes to maintain the same degree of SSD across environments and that this is accomplished by the sexes exhibiting differential sensitivity of the physiological factors that determine body size to environmental variation.  相似文献   

17.
Interactions between intraguild species that act as both competitors and predator–prey can be especially complex. We studied patterns of space use by the black-footed ferret (Mustela nigripes), a prairie dog (Cynomys spp.) specialist, and the American badger (Taxidea taxus), a larger generalist carnivore that competes for prairie dogs and is known to kill ferrets. We expected that ferrets would spatially avoid badgers because of the risk of predation, that these patterns of avoidance might differ between sexes and age classes, and that the availability of food and space might influence these relationships. We used location data from 60 ferrets and 15 badgers to model the influence of extrinsic factors (prairie dog density and colony size) and intrinsic factors (sex, age) on patterns of space use by ferrets in relation to space use by different sex and age categories of badgers. We documented asymmetric patterns of avoidance of badgers by ferrets based on the sex of both species. Female ferrets avoided adult female badgers, but not male badgers, and male ferrets exhibited less avoidance than female ferrets. Additionally, avoidance decreased with increasing densities of prairie dogs. We suggest that intersexual differences in space use by badgers create varying distributions of predation risk that are perceived by the smaller carnivore (ferrets) and that females respond more sensitively than males to that risk. This work advances understanding about how competing species coexist and suggests that including information on both intrinsic and extrinsic factors might improve our understanding of behavioral interactions between sympatric species.  相似文献   

18.
In many taxa, temporary nutritional shortage early in development can favour compensatory strategies that include elevated growth (‘compensatory growth’) and/or extension of the usual period of development (‘catch-up growth’) once conditions improve. The net gains from each strategy depend on the extent to which larger body size increases fitness relative to associated costs (e.g. long-term effects on adult performance, or a greater risk of juvenile mortality). These costs and benefits are likely to differ between the sexes due to sex-specific selection. We documented the responses of male and female mosquitofish (Gambusia holbrooki) to 3 weeks of low food availability (7–28 days old) that restricted subsequent growth and morphology compared to control fish continuously reared on a high food diet (N = 635 fish total). Neither sex elevated their growth rate immediately after being returned to a normal diet compared to control fish. When measured over the entire period until maturation, however, females showed compensatory growth. Males did not. Both sexes also exhibited catch-up growth but the delay until maturation was significantly longer for males. Despite early growth restriction, both sexes eventually matured at almost the same size as control fish, although males had a significantly smaller gonopodium (a sexually selected trait) than that of control males. Reasons for these sex differences are discussed.  相似文献   

19.
The body size of insects is affected by environmental conditions during development and can present considerable intraspecific variations, which can be seen as an ultimate consequence/adaptation to environmental conditions. This paper evaluated whether the body size of the butterfly Dryas iulia from subtropical populations was influenced by changing climate conditions and food source availability during the seasons. The likely reasons behind body size variation were also investigated. First, field data on body size variation, host‐plant availability and climate fluctuation throughout the seasons were recorded. Then, the effects of host‐plant species and temperature on body size were analyzed by controlled experiments. Field data revealed that body size and host‐plant availability varied significantly through the seasons. Populations had the smallest body size during the spring and the biggest size during summer, whereas host‐plant availability was lower during winter and higher during spring. The controlled experiments revealed that both temperature and host‐plant had significant effect on the plasticity of body size. Larvae subjected to winter temperature treatment led to smaller butterflies when compared to immatures reared under summer temperature treatment, and larvae fed with Passiflora misera produced bigger adults when compared to larvae reared on Passiflora suberosa. The combination of data gathered in the field and in the laboratory suggests that seasonal body size variation in D. iulia is related mainly to differences in the temperatures to which larvae are subjected during development, while host‐plant shifts caused by differential availability of food through the seasons had slightly effects on the variation observed.  相似文献   

20.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号