首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of binding of Watson-Crick base pairs by third strand nucleic acid residues via triple helix formation was investigated in a DNA pyrimidine triplex motif by thermal melting experiments. The host duplex was of the type A10-X-A10: T10-Y-T10, and the third strand T10-Z-T10, giving rise to 16 possible triplexes with Z:XY inserts, 4 duplexes with the Watson-Crick base pairs (XY) and 12 duplexes with mismatch pairs (XZ), all of whose stabilities were compared. Two Z:XY combinations confirm the primary binding of AT and GC target pairs in homopurine.homopyrimidine sequences by T and C residues, respectively. All other Z:XY combinations in the T:AT environment result in triplex destabilization. While some related observations have been reported, the present experiments differ importantly in that they were performed in a T:AT nearest neighbor environment and at physiological ionic strength and pH, all of which were previously untested. The conclusions now drawn also differ substantially from those in previous studies. Thus, by evaluating the depression in Tm due to base triplet mismatches strictly in terms of third strand residue affinity and specificity for the target base pair, it is shown that none of the triplet combinations that destabilize qualify for inclusion in the third strand binding code for the pyrimidine triplex motif. Hence, none of the mismatch triplets afford a general way of circumventing the requirement for homopurine.homopyrimidine targets when third strands are predominated by pyrimidines, as others have suggested. At the same time, the applicability of third strand binding is emphasized by the finding that triplexes are equally or much more sensitive to base triplet mismatches than are Watson-Crick duplexes to base pair mismatches.  相似文献   

2.
Thermodynamic parameters of helix formation were measured spectroscopically for seven hexaribonucleotides containing a GC tetramer core and G.U or other terminal mismatches. The free energies of helix formation are compared with those for the tetramer core alone and with those for the hexamer with six Watson-Crick base pairs. In 1 M NaCl, at 37 degrees C, the free energy of a terminal G.U mismatch is about equal to that of the corresponding A.U pair. Although other terminal mismatches studied add between -1.0 and -1.6 kcal/mol to delta G0 37 for helix formation, all are less stable than the corresponding Watson-Crick pairs. Comparisons of the stability increments for terminal G.U mismatches and G.C pairs suggest when stacking is weak the additional hydrogen bond in the G.C pair adds roughly -1 kcal/mol to the favorable free energy of duplex formation.  相似文献   

3.
Nuclear magnetic resonance (NMR) has been used to monitor the conformation and dynamics of the d-(C1-G2-A3-G4-A5-A6-T6-T5-C4-G3-C2-G1) self-complementary dodecanucleotide (henceforth called 12-mer GA) that contains a dG X dA purine-purine mismatch at position 3 in the sequence. These results are compared with the corresponding d(C-G-C-G-A-A-T-T-C-G-C-G) dodecamer duplex (henceforth called 12-mer) containing standard Watson-Crick base pairs at position 3 [Patel, D.J., Kozlowski, S.A., Marky, L.A., Broka, C., Rice, J.A., Itakura, K., & Breslauer, K.J. (1982) Biochemistry 21, 428-436]. The dG X dA interaction at position 3 was monitored at the guanosine exchangeable H-1 and nonexchangeable H-8 protons and the nonexchangeable adenosine H-2 proton. We demonstrate base-pair formation between anti orientations of the guanosine and adenosine rings on the basis of nuclear Overhauser effects (NOE) observed between the H-2 proton of adenosine 3 and the imino protons of guanosine 3 (intra base pair) and guanosines 2 and 4 (inter base pair). The dG(anti) X dA(anti) pairing should result in hydrogen-bond formation between the guanosine imino H-1 and carbonyl O-6 groups and the adenosine N-1 and NH2-6 groups, respectively. The base pairing on either side of the dG X dA pair remains intact at low temperature, but these dG X dC pairs at positions 2 and 4 are kinetically destabilized in the 12-mer GA compared to the 12-mer duplex. We have estimated the hydrogen exchange kinetics at positions 4-6 from saturation-recovery measurements on the imino protons of the 12-mer GA duplex between 5 and 40 degrees C. The measured activation energies for imino proton exchange in the 12-mer GA are larger by a factor of approximately 2 compared to the corresponding values in the 12-mer duplex. This implies that hydrogen exchange in the 12-mer GA duplex results from a cooperative transition involving exchange of several base pairs as was previously reported for the 12-mer containing a G X T wobble pair at position 3 [Pardi, A., Morden, K.M., Patel, D.J., & Tinoco, I., Jr. (1982) Biochemistry 21, 6567-6574]. We have assigned the nonexchangeable base protons by intra and inter base pair NOE experiments and monitored these assigned markers through the 12-mer GA duplex to strand transition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
This report describes an infrared (IR) spectroscopic study of a model cytosine-guanine base pair. This base pair is part of a self-consistent experimental system based on lipophilic ribose derivatives of cytidine (C), guanosine (G) and O6-methylguanosine (O6MeG) that are soluble in non-aqueous, low dielectric solvents at appreciable concentrations. Previous experiments on this system have revealed different rotation dynamics for the amino bonds within the CG base pair, an observation that could be explained by the presence of rare tautomers (P.O. Lowdin, Reviews of Modern Physics 35,724 (1963)), or by mutual polarization of the base pairs (L.D. Williams, N.G. Williams and B.R. Shaw,J.Am.Chem.Soc. 112,829 (1990)). The IR spectra in the OH and NH stretching region indicate formation of hydrogen-bonded CG base pairs and self associates in 1,2-dichlorobenzene over a temperature range from 10 to 290K. Changes in the lineshapes and intensities of the IR bands with temperature correlate with phase transitions of the solvent, but no evidence is seen for an OH stretching band that would indicate the formation of hydroxyl tautomers within base pairs. Similarly, the relative intensities of the C = O stretching bands of CG in cyclohexane solution remain constant over this same temperature range, confirming that within the base pair, the tautomeric states of the bases remain essentially unperturbed in the 2-amino/6-keto form of G and the 2-keto/4-amino form of C. The spectra of O6-MeG aid in the band assignments, since this molecule is frozen in an equivalent of the 2-amino/6-hydroxyl tautomer, but without the OH group and its associated stretching band. We conclude that the probability of tautomerism does not appear to be sufficient to explain the different rotation dynamics for the two amino bonds of the CG base pair. Rather it is argued that mutual polarization within the base pair, which would increase the bond order of the amino bond of C within the base pair, can explain the results without the formation of unconventional tautomers.  相似文献   

5.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

6.
7.
D Alkema  P A Hader  R A Bell  T Neilson 《Biochemistry》1982,21(9):2109-2117
A series of pentaribonucleotides, ApGpXpGpU (where X identical to A, G, C, or U), was synthesized to investigate the effects of flanking G . C pairs on internal Watson-Crick, G . U, and nonbonded base pairs. Sequences ApGpApCpU (Tm = 26 degrees C) and ApGpCpCpU (Tm = 25 degrees C) were each found to form a duplex with non-base-paired internal residues that stacked with the rest of the sequence but were not looped out. ApGpGpCpU also forms a duplex (Tm = 30 degrees C) but with dangling terminal nonbonded adenosines rather than internal nonbonded guanosines. ApGpUpCpU prefers a stacked single-strand conformation. In addition, contribution to duplex stability from an internal A . U or G . C base pair is enhanced by 6 degrees C when flanked by G . C base pairs as compared to A . U base pairs. G . C base pairs flanking an internal G . U base pair were found to be more tolerant to the altered conformation of a G . U pair and result in an increase to stability comparable with that found for an internal A . U base pair.  相似文献   

8.
Until now, it has been difficult to establish exactly how a specific DNA lesion signals apoptosis because each DNA damaging agent produces a collection of distinct DNA lesions and produces damage in RNA, protein, and lipids. We have developed a system in human cells that focuses on the response to a single type of DNA lesion, namely O(6)-methylguanine (O(6)MeG). We dissect the signaling pathways involved in O(6)MeG-induced apoptosis, a response dependent on the MutSalpha heterodimer that is normally involved in DNA mismatch repair. O(6)MeG triggers robust activation of caspases associated with both death receptor- and mitochondrial-mediated apoptosis. Despite this, O(6)MeG/MutSalpha-triggered apoptosis is only partly dependent on caspase activation; moreover, it is mediated solely by mitochondrial signaling and not at all by death receptor signaling. Finally, while Bcl-2 and Bcl-x(L), negative regulators of mitochondrial-regulated apoptosis, could effectively block O(6)MeG/MutSalpha-dependent apoptosis, they were unable to prevent the cells from ultimately dying.  相似文献   

9.
Single crystal X-ray diffraction techniques have been used to characterise the molecular structure of the title compound to 2.5A resolution. The structure consists of ten standard Watson-Crick base pairs and two G.A mismatched base pairs. The purine-purine mismatches have guanine in the usual anti orientation with respect to the sugar and adenine in syn orientation. There are two hydrogen bonds formed between the mismatch bases, N-1 and O-6 of guanine with N-7 and N-6 of adenine respectively. The bulky purine-purine mismatches are accommodated with minor perturbation of the sugar-phosphate backbone. There is a slight improvement in base pair overlap at the mismatch sites. Details of the backbone conformation, base stacking interactions and hydration are presented and compared with those of the parent compound d(C-G-C-G-A-A-T-T-C-G-C-G).  相似文献   

10.
The success of comparative analysis in resolving RNA secondary structure and numerous tertiary interactions relies on the presence of base covariations. Although the majority of base covariations in aligned sequences is associated to Watson-Crick base pairs, many involve non-canonical or restricted base pair exchanges (e.g. only G:C/A:U), reflecting more specific structural constraints. We have developed a computer program that determines potential base pairing conformations for a given set of paired nucleotides in a sequence alignment. This program (ISOPAIR) assumes that the base pair conformation is maintained through sequence variation without significantly affecting the path of the sugar-phosphate backbone. ISOPAIR identifies such 'isomorphic' structures for any set of input base pair or base triple sequences. The program was applied to base pairs and triples with known structures and sequence exchanges. In several instances, isomorphic structures were correctly identified with ISOPAIR. Thus, ISOPAIR is useful when assessing non-canonical base pair conformations in comparative analysis. ISOPAIR applications are limited to those cases where unusual base pair exchanges indeed reflect a non-canonical conformation.  相似文献   

11.
12.
The suicidal inactivation mechanism of DNA repair methyltransferases (MTases) was exploited to measure the relative efficiencies with which the Escherichia coli, human, and Saccharomyces cerevisiae DNA MTases repair O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT), two of the DNA lesions produced by mutagenic and carcinogenic alkylating agents. Using chemically synthesized double-stranded 25-base pair oligodeoxynucleotides containing a single O6MeG or a single O4MeT, the concentration of O6MeG or O4MeT substrate that produced 50% inactivation (IC50) was determined for each of four MTases. The E. coli ogt gene product had a relatively high affinity for the O6MeG substrate (IC50 8.1 nM) but had an even higher affinity for the O4MeT substrate (IC50 3 nM). By contrast, the E. coli Ada MTase displayed a striking preference for O6MeG (IC50 1.25 nM) as compared to O4MeT (IC50 27.5 nM). Both the human and the yeast DNA MTases were efficiently inactivated upon incubation with the O6MeG-containing oligomer (IC50 values of 1.5 and 1.3 nM, respectively). Surprisingly, the human and yeast MTases were also inactivated by the O4MeT-containing oligomer albeit at IC50 values of 29.5 and 44 nM, respectively. This result suggests that O4MeT lesions can be recognized in this substrate by eukaryotic DNA MTases but the exact biochemical mechanism of methyltransferase inactivation remains to be determined.  相似文献   

13.
The previously described NMR structure of a 5'-CU-3'/5'-UU-3' motif, which is highly conserved within the 3'-UTR Y-stem of poliovirus-like enteroviruses, revealed striking regularities of the local helix geometry, thus retaining the pseudo-twofold symmetry of the RNA helix. A mutant virus with both pyrimidine base pairs changed into Watson-Crick replicated as wild type, indicating the functional importance of this symmetry relation in viral RNA replication. Here we investigated the effect of changing only one of the two pyrimidine base pairs to Watson-Crick. We determined the NMR structures of two Y-stem variants: one containing the 5'-CU-3'/5'-AU-3' motif, which has been found in wild-type virus isolates as well, and the other containing a 5'-CU-3'/5'-UG-3' motif, which is not present in any enterovirus sequenced to date. Both structures show single pyrimidine mismatches with intercalated bases. In the 5'-CU-3'/5'-AU-3' motif a C-U Watson-Crick-type base pair is formed that retains the pseudo-twofold symmetry, while in the 5'-CU-3'/5'-UG-3' motif a single asymmetric U-U mismatch breaks the twofold symmetry. Surprisingly, for the nonnatural variant no effect of the single base-pair replacement was observed on polioviral RNA replication using an in vitro replicon assay.  相似文献   

14.
Abstract

Single crystal X-ray diffraction techniques have been used to characterise the molecular structure of the title compound to 2.5Å resolution. The structure consists of ten standard Watson-Crick base pairs and two G.A mismatched base pairs. The purine-purine mismatches have guanine in the usual anti orientation with respect to the sugar and adenine in syn orientation. There are two hydrogen bonds formed between the mismatch bases, N-l and 0–6 of guanine with N-7 and N-6 of adenine respectively. The bulky purine-purine mismatches are accommodated with minor perturbation of the sugar-phosphate backbone. There is a slight improvement in base pair overlap at the mismatch sites. Details of the backbone conformation, base stacking interactions and hydration are presented and compared with those of the parent compound d(C-G-C-G-A-A-T-T-C-G-C-G).  相似文献   

15.
The hydration patterns around the RNA Watson-Crick and non-Watson-Crick base pairs in crystals are analyzed and described. The results indicate that (i) the base pair hydration is mostly "in-plane"; (ii) eight hydration sites surround the Watson-Crick G-C and A-U base pairs, with five in the deep and three in the shallow groove, an observation which extends the characteristic isostericity of Watson-Crick pairs; (iii) while the hydration around G-C base pairs is well defined, the hydration around A-U base pairs is more diffuse; (iv) the hydration sites close to the phosphate groups are the best defined and the most recurrent ones; (v) a string of water molecules links the two shallow groove 2'-hydroxyl groups, and (vi) the water molecules fit into notches, the size and accessibility of which are almost as important as the number and strength of the hydrophilic groups lining the cavity. Residence times of water molecules at specific hydration sites, inferred from molecular dynamics simulations, are discussed in the light of present data.  相似文献   

16.
We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn). Similar experiments were also performed with N=bis-amino-U (BAU) (for stable recognition of AT base pairs) and N=S (for recognition of TA inversions). We find that the introduction of a duplex mismatch destabilises the C+.GZ, T.AZ and G.TZ triplets. A similar effect is seen with BAU.AZ triplets. In contrast, other base combinations, based on non-standard triplets such as C.AZ, T.TZ, G.CZ and A.CZ are stabilised by the presence of a duplex mismatch. In each case S binds to sites containing duplex mismatches better than the corresponding Watson-Crick base pairs.  相似文献   

17.
Adenovirus 5 treated with MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) has greater plaque-forming ability in cell strains having the Mer+ phenotype than in strains having the Mer- phenotype. MNNG-treated Mer- strains repair the N3-methyladenine (N3MeA) but not the O6-methylguanine (O6MeG) produced in their DNA, while MNNG-treated Mer+ strains repair both of these adducts. The fate of N7-methylguanine (another DNA adduct produced by MNNG) is similar in Mer+ and Mer- strains. We show in this paper that 2.3 +/- 0.4 O6MeG and 1.4 N3MeA per adenovirus genome correlate with one lethal hit when the survival assay is done using Mer- strains as viral hosts. We suggest that O6MeG is the lesion lethal to the virus.  相似文献   

18.
Compounds that are covalent analogues of nucleic acid base pairs of normal, long, and short C1' to C1' dimensions [B. Devadas and N.J. Leonard (1990) J. Am. Chem. Soc., 112, 3125-3135.] have been added to the oligodeoxyribonucleotide d(A)6 with bacteriophage T4 RNA ligase as a prelude to placing them at defined loci within nucleic acid duplexes. Analogue cross sections that represent a normal Watson-Crick base pair as well as a pyrimidine-pyrimidine and a purine-purine apposition were ligated in modest yields (approximately 20%) to the oligonucleotide. Ligation conditions were optimized for each analogue, and the cross section was joined to only a single oligonucleotide in each case. The structures of the ligated products were proved by HPLC, enzymatic degradation, and spectroscopic analyses.  相似文献   

19.
Wright DJ  Rice JL  Yanker DM  Znosko BM 《Biochemistry》2007,46(15):4625-4634
An enzyme family known as adenosine deaminases that act on RNA (ADARs) catalyzes adenosine deamination in RNA. ADARs act on RNA that is largely double-stranded and convert adenosine to inosine, resulting, in many cases, in an I x U pair. Thermodynamic parameters derived from optical melting studies are reported for a series of 14 oligoribonucleotides containing single I x U pairs adjacent to Watson-Crick pairs. In order to determine unique linearly independent nearest neighbor parameters for I x U pairs, four duplexes containing 3'-terminal I x U pairs and four duplexes containing 5'-terminal I x U pairs have also been thermodynamically characterized. This data was combined with previously published data of seven duplexes containing internal, terminal, or tandem I x U pairs from Strobel et al. [Strobel, S. A., Cech, T. R., Usman, N., and Beigelman, L. (1994) Biochemistry 33, 13824-13838] and Serra et al. [Serra, M. J., Smolter, P. E., and Westhof, E. (2004) Nucleic Acids Res. 32, 1824-1828]. On average, a duplex with an internal I x U pair is 2.3 kcal/mol less stable than the same duplex with an A-U pair, however, a duplex with a terminal I x U pair is 0.8 kcal/mol more stable than the same duplex with an A-U pair. Although isosteric with a G-U pair, on average, a duplex with an internal I x U pair is 1.9 kcal/mol less stable than the same duplex with a G-U pair, however, a duplex with a terminal I x U pair is 0.9 kcal/mol more stable than the same duplex with a G-U pair. Duplexes with tandem I x U pairs are on average 5.9 and 3.8 kcal/mol less stable than the same duplex with tandem A-U or tandem G-U pairs, respectively. Using the combined thermodynamic data and a complete linear least-squares fitting routine, nearest neighbor parameters for all nearest neighbor combinations of I x U pairs and an additional parameter for terminal I x U pairs have been derived.  相似文献   

20.
Hairpin polyamides selectively recognize predetermined DNA sequences with affinities comparable to naturally occurring proteins. Internal side-by-side pairs of unsymmetrical aromatic rings within the minor groove of DNA distinguish each of the four Watson-Crick base pairs. In contrast, N-terminal ring pairs exhibit less specificity, with the exception of Im/Py targeting G.C base pairs. In an effort to explore the sequence specificity of new ring pairs, a series of hairpin polyamides containing 3-substituted-thiophene-2-carboxamide residues at the N-terminus was synthesized. An N-terminal 3-methoxy (or 3-chloro) thiophene residue paired opposite Py displayed 6- (and 3-) fold selectivity for T.A relative to A.T base pair, while disfavoring G,C base pairs by >200-fold. Our data suggests shape selective recognition with projection of the 3-thiophene substituent (methoxy or chloro) to the floor of the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号