首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hirano N  Sawasaki T  Tozawa Y  Endo Y  Takai K 《Proteins》2006,64(2):343-354
It has been proposed that eukaryotic translation systems have a greater capacity for cotranslational folding of domains than prokaryotic translation systems, which reduces interdomain misfolding in multidomain proteins and, therefore, leads to tolerance for random recombination of domains. However, there has been a controversy as to whether prokaryotic and eukaryotic translation systems differ in the capacity for cotranslational domain folding. Here, to examine whether these systems differ in the tolerance for the random domain recombination, we systematically combined six proteins, out of which four are soluble and two are insoluble when produced in an Escherichia coli and a wheat germ cell-free protein synthesis systems, to construct a fusion protein library. Forty out of 60 two-domain proteins and 114 out of 120 three-domain proteins were more soluble when produced in the wheat system than in the E. coli system. Statistical analyses of the solubilities and the activities indicated that, in the wheat system but not in the E. coli system, the two soluble domains comprised mainly of beta-sheets tend to avoid interdomain misfolding and to fold properly even at the neighbor of the misfolded domains. These results demonstrate that a eukaryotic system permits the concomitance of a wider variety of domains within a single polypeptide chain than a prokaryotic system, which is probably due to the difference in the capacity for cotranslational folding. This difference is likely to be related to the postulated difference in the tolerance for random recombination of domains.  相似文献   

2.
Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too.  相似文献   

3.
4.
Amino acid incorporation in a cell-free system derived from rat liver has previously been found to be inhibited by GSSeSG (selenodiglutathione). In the present experiments the effect of GSSeSG on protein synthesis in 3T3-f cells, on growth and protein synthesis in Escherichia coli, and on amino acid incorporation in a cell-free system derived from E. coli, was studied. GSSeSG inhibits the incorporation of [3H]leucine into protein by 3T3-f cells. This inhibition cannot be reversed by removing GSSeSG and is correlated with the uptake of GSSeSG. Sodium selenite (Na2SeO3) and oxidized glutathione had no inhibitory effect in this system. [3H]Uridine or [3H]thymidine incorporation into RNA or DNA was not inhibited, indicating that the primary action of GSSeSG was on protein synthesis. GSSeSG did not influence the growth of E. coli in a synthetic medium, although enhanced amino acid incorporation was observed. In the cell-free system derived from E. coli, amino acid incorporation was not changed by GSSeSG, indicating that elongation factor G, in contrast to elongation factor 2 of mammalian cell systems, is not blocked by GSSeSG.  相似文献   

5.
Trigger factor and DnaK protect nascent protein chains from misfolding and aggregation in the E. coli cytosol, but how these chaperones affect the mechanism of de novo protein folding is not yet understood. Upon expression under chaperone-depleted conditions, multidomain proteins such as bacterial beta-galactosidase (beta-gal) and eukaryotic luciferase fold by a rapid but inefficient default pathway, tightly coupled to translation. Trigger factor and DnaK improve the folding yield of these proteins but markedly delay the folding process both in vivo and in vitro. This effect requires the dynamic recruitment of additional trigger factor molecules to translating ribosomes. While beta-galactosidase uses this chaperone mechanism effectively, luciferase folding in E. coli remains inefficient. The efficient cotranslational domain folding of luciferase observed in the eukaryotic system is not compatible with the bacterial chaperone system. These findings suggest important differences in the coupling of translation and folding between bacterial and eukaryotic cells.  相似文献   

6.
Mammalian proteins expressed in Escherichia coli are used in a variety of applications. A major drawback in producing eukaryotic proteins in E.coli is that the bacteria lack most eukaryotic post-translational modification systems, including serine/threonine protein kinase(s). Here we show that a eukaryotic protein can be phosphorylated in E.coli by simultaneous expression of a mammalian protein kinase and its substrate. We show that in bacteria expressing SRPK1, ASF/SF2 becomes phosphorylated to a degree resembling native ASF/SF2 present in interphase HeLa cell nuclei. The E.coli phosphorylated ASF/SF2 is functional in splicing and, contrary to the unphosphorylated protein, soluble under native conditions.  相似文献   

7.
The chloroplast protein synthesis elongation factor Tu (EF-Tuchl) has been purified to near homogeneity from Euglena gracilis. Chromatography of the postribosomal supernatant of light-induced Euglena on DEAE-Sephadex reveals two forms of EF-Tuchl. Further purification has shown that one species consists of a complex between EF-Tuchl and a factor that stimulates its activity. The other species consists of free EF-TUchl. The factor has been purified from both chromatographic forms by taking advantage of the molecular weight shift that occurs upon disruption of the complex between EF-Tuchl and the stimulatory factor. EF-Tuchl consists of a single polypeptide chain with a molecular weight of about 50,000. EF-Tuchl is as active on Escherichia coli ribosomes as it is on its homologous ribosomes but displays no detectable activity on eukaryotic cytoplasmic ribosomes. It is stimulated in polymerization by E. coli EF-Ts and will form a complex with the prokaryotic factor that can be isolated by gel filtration chromatography. Like E. coli EF-Tu, it is sensitive to modification by N-ethylmaleimide and is inhibited by the antibiotic kirromycin. Thus, the chloroplast factor has many features that reflect the close relationship between prokaryotic and chloroplast translational systems.  相似文献   

8.
目的:在大肠杆菌和毕赤酵母中表达人热激因子(hHSF)-1突变体hHSF190/2,并对其活性进行研究。方法:利用分子克隆技术分别构建了hHSF190/2的原核表达质粒pET45b-hHSF190/2和真核表达质粒pPICZaA-hHSF190/2,分别转入大肠杆菌BL21(DE3)pLysS和毕赤酵母GS115进行诱导表达;经纯化除去杂蛋白后,采用蛋白免疫印迹、电泳迁移率变动分析和蛋白转导等方法研究表达产物的功能和活性。结果:hHSF190/2在2个系统中均得到有效表达,都具有与热激元件(HSE)结合的活性,但真核表达产物与HSE的结合能力明显高于原核表达产物;原核及真核系统表达的hHSF190/2都能激发热激蛋白(HSP)70的表达,但真核表达的hHSF190/2活性更高。结论:hHSF190/2有望成为有治疗作用的蛋白药物。  相似文献   

9.
S Brown 《The New biologist》1991,3(5):430-438
4.5S RNA is a stable RNA of Escherichia coli, and functional homologs of the molecule apparently exist in all prokaryotes: eubacteria, archebacteria, and mycoplasma. Genetic and physiological measurements of the function of 4.5S RNA in E. coli indicate a role for this RNA in protein synthesis. A conserved domain of 4.5S RNA displays structural similarity with the eukaryotic 7S RNA that functions in protein secretion. Although complementation by eukaryotic 7S RNAs remains to be demonstrated, a number of archaebacterial 7S RNAs are able to replace 4.5S RNA for growth of E. coli, and 4.5S RNA is able to mediate a number of 7S RNA functions in vitro. Surprisingly, no effects on protein secretion in E. coli have been directly attributed to 4.5S RNA. These observations raise the question of whether molecules of similar structure necessarily perform the same function.  相似文献   

10.
Zhang L  Ging NC  Komoda T  Hanada T  Suzuki T  Watanabe K 《FEBS letters》2005,579(28):6423-6427
All medically useful antibiotics should have the potential to distinguish between target microbes (bacteria) and host cells. Although many antibiotics that target bacterial protein synthesis show little effect on the translation machinery of the eukaryotic cytoplasm, it is unclear whether these antibiotics target or not the mitochondrial translation machinery. We employed an in vitro translation system from bovine mitochondria, which consists of mitochondrial ribosomes and mitochondrial elongation factors, to estimate the effect of antibiotics on mitichondrial protein synthesis. Tetracycline and thiostrepton showed similar inhibitory effects on both Escherichia coli and mitochondrial protein synthesis. The mitochondrial system was more resistant to tiamulin, macrolides, virginiamycin, fusidic acid and kirromycin than the E. coli system. The present results, taken together with atomic structure of the ribosome, may provide useful information for the rational design of new antibiotics having less adverse effects in humans and animals.  相似文献   

11.
12.
This report describes an Escherichia coli genetic system that permits bacterial genetic methods to be applied to the study of essentially any prokaryotic or eukaryotic site-specific DNA binding protein. It consists of two parts. The first part is a set of tools that facilitate construction of customized E.coli strains bearing single copy lacZYA reporters that are repressed by a specific target protein. The second part is a pair of regulatable protein expression vectors that permit in vivo production of the target protein at levels appropriate for genetic experiments. When expressed in a properly designed reporter strain, the target protein represses the lac genes, resulting in an E.coli phenotype that can be quantitatively measured or exploited in large scale genetic screens or selections. As a result, large plasmid-based libraries of protein genes or pools of mutagenized variants of a given gene may be examined in relatively simple genetic experiments. The strain construction technique is also useful for generating E.coli strains bearing reporters for other types of genetic systems, including repression-based and activation-based systems in which chimeric proteins are used to examine interactions between foreign protein domains.  相似文献   

13.
The P68 protein (referred to as P68 on the basis of its molecular weight of 68,000 in human cells) is a serine/threonine kinase induced by interferon treatment and activated by double-stranded (ds) RNAs. Although extensively studied, little is currently known about the regulation of kinase function at the molecular level. What is known is that activation of this enzyme triggers a series of events which lead to an inhibition of protein synthesis initiation and may, in turn, play an integral role in the antiviral response to interferon. To begin to understand P68 and its biological functions in the eukaryotic cell, we have expressed the protein kinase in Escherichia coli under control of the bacteriophage T7 promoter. In rifampicin-treated cells, metabolically labeled with [35S]methionine and induced by IPTG, the P68 kinase was the predominant labeled product. Further, P68 was recovered from extracts as a fully functional enzyme, shown by its ability to become activated and phosphorylate its natural substrate, the alpha subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). Moreover, P68 was phosphorylated in vivo in E. coli, providing conclusive evidence that the kinase has the capacity to phosphorylate and activate itself in the absence of other eukaryotic proteins. In contrast, a mutant P68 protein, containing a single amino acid substitution in the invariant lysine in catalytic domain II, was completely inactive. Interestingly, both the mutant and wild-type protein kinases efficiently bound activator dsRNAs despite the fact that only the latter was activated by these RNAs. Finally, the expressed kinase could be isolated from contaminating E. coli proteins in an active form by immunoaffinity chromatography with a monoclonal antibody specific for P68.  相似文献   

14.
Processing of M13 procoat protein to transmembrane coat protein by dog pancreas microsomes is stimulated by a component of rabbit reticulocyte lysate and ATP. We asked whether this ATP-dependent reaction, involved in membrane assembly of procoat protein in the eukaryotic system, is related to the membrane potential dependent reaction observed for the membrane assembly of procoat protein in E. coli. Specifically, we asked if a mutant procoat protein which had been previously shown to be independent of the membrane potential with respect to its assembly in E. coli (M13am8H1R1 procoat protein) shows a stimulation by reticulocyte lysate and ATP in its assembly into microsomes. Since the mutant procoat protein behaved exactly as the wild type procoat protein in the eukaryotic in vitro system, we propose that the ATP-dependent reaction observed for the eukaryotic system does not substitute for the membrane potential dependent reaction in the prokaryotic system.  相似文献   

15.
真核翻译起始因子 4A(eukaryoticinitiationfactor 4A ,eIF 4A)是DEAD盒蛋白家族的ATP依赖性的RNA解旋酶类中的一个原型成员 .它在真核细胞的蛋白质合成的起始过程中起着关键性作用 .通过PCR扩增和放射探针杂交相结合的方法筛选食蟹猴疟原虫 (Plasmodiumcynomolgi)的cDNA文库 ,克隆了一个eIF 4A同源蛋白的完整cDNA序列 ,命名为CH1F .CH1F全长 1 75 3bp ,包含一个1 1 97bp的完整阅读框 ,推测编码一个由 398个氨基酸组成的蛋白 .对CH1F的蛋白序列用BlastP进行搜索和分析 ,提示它应该是DEAD盒家族的一个eIF 4A同源蛋白 ;用DNAStar将其与许多典型的DEAD盒蛋白序列进行比对分析 ,结果显示 :比起其它的DEAD盒蛋白 ,它与eIF 4A或eIF 4A的同源蛋白具有更高的同源性和更多序列上的相似结构域 .将包含完整阅读框的片段亚克隆进表达载体pET 2 8a (+) ,在大肠杆菌DH5α中表达 ,产生的融合蛋白大小在 4 5kD左右 .对该融合蛋白进行纯化、重新折叠和初步鉴定 .ATP酶活性检测显示 ,该融合蛋白只有很低的ATP酶活性 ,而且它的ATP酶活性似乎不依赖于核酸底物 .对这一检测结果给出 3种可能的原因 .这一检测结果与根据序列分析得到的推论———CH1F蛋白可能是一个eIF 4A并不矛盾  相似文献   

16.
17.
18.
19.
Small 40S Artemia salina and large 50S Escherichia coli ribosomal subunits can be assembled into 73S hybrid monosomes active in model assays for protein synthesis. The reciprocal combination–small 30S E coli and large 60S A salina–fails to form hybrids. The 73S hybrid particles strongly resemble homologous 70S E coli and 80S A salina monosomes. The morphologic differences between the corresponding eukaryotic and prokaryotic ribosomal particles, established by electron microscopy, do not significantly affect the assembly and mutual orientation of 40S A salina and 50S E coli subunits in the heterologous monosome. The fact that the structure of the interface, the supposed site of protein synthesis, is preserved in the active hybrid implies that retention or loss of biologic activity of hybrid ribosomes is determined by the extent of conformational changes in the interface.  相似文献   

20.
Although fluorescent dyes, such as fluorescein derivatives, have bulky and complex structures, nonnatural amino acids carrying these fluorescein derivatives are acceptable by the Escherichia coli ribosome and are useful for the cotranslational fluorescent labeling of cell-free synthesized proteins. Surprisingly, the incorporation efficiency of nonnatural amino acids carrying fluorescein derivatives into translated proteins depends on the source of the translational machinery used in cell-free protein synthesis. That is, whereas the E. coli ribosome efficiently supported the incorporation of nonnatural amino acids carrying fluorescein derivatives into a protein structure, no detectable fluorescent signal was observed from the protein expressed in the eukaryotic cell-free protein synthesis system performed in the presence of fluorescein-conjugated aminoacylated transfer RNA (tRNA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号