首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Listeria monocytogenes is a significant food-borne human and veterinary pathogen. Contaminated silage commonly leads to disease in livestock, but the pervasive nature of the bacterium can make it difficult to identify the source of infection. An investigation of bovine listeriosis that occurred on a Pacific Northwest dairy farm (“farm A”) revealed that the clinical strain was closely related to fecal strains from asymptomatic cows, and that farm environment was heavily contaminated with a diversity of L. monocytogenes strains. In addition, the farm A clinical strain was closely related to clinical and environmental strains obtained 1 year prior from a second Northwest dairy farm (“farm B”). To investigate the source(s) of contamination on farm A, environmental samples were collected from farm A at two time points. Pulsed-field gel electrophoresis characterization of 538 isolates obtained from that farm identified 57 different AscI pulsovars. Fecal isolates obtained from individual cows were the most genetically diverse, with up to 94% of fecal samples containing more than one pulsovar. The maximum numbers of pulsovars and serotypes isolated from a fecal sample of one cow were 6 and 4, respectively. Serotype 1/2a was isolated most frequently at both time points. Microarray genotyping of bovine listeriosis, fecal, and silage strains from both farms identified four probes that differentiated listeriosis strains from environmental strains; however, no probe was common to both bovine listeriosis strains.  相似文献   

2.
A case-control study involving 24 case farms with at least one recent case of listeriosis and 28 matched control farms with no listeriosis cases was conducted to probe the transmission and ecology of Listeria monocytogenes on farms. A total of 528 fecal, 516 feed, and 1,012 environmental soil and water samples were cultured for L. monocytogenes. While the overall prevalence of L. monocytogenes in cattle case farms (24.4%) was similar to that in control farms (20.2%), small-ruminant (goat and sheep) farms showed a significantly (P < 0.0001) higher prevalence in case farms (32.9%) than in control farms (5.9%). EcoRI ribotyping of clinical (n = 17) and farm (n = 414) isolates differentiated 51 ribotypes. L. monocytogenes ribotypes isolated from clinical cases and fecal samples were more frequent in environmental than in feed samples, indicating that infected animals may contribute to L. monocytogenes dispersal into the farm environment. Ribotype DUP-1038B was significantly (P < 0.05) associated with fecal samples compared with farm environment and animal feedstuff samples. Ribotype DUP-1045A was significantly (P < 0.05) associated with soil compared to feces and with control farms compared to case farms. Our data indicate that (i) the epidemiology and transmission of L. monocytogenes differ between small-ruminant and cattle farms; (ii) cattle contribute to amplification and dispersal of L. monocytogenes into the farm environment, (iii) the bovine farm ecosystem maintains a high prevalence of L. monocytogenes, including subtypes linked to human listeriosis cases and outbreaks, and (iv) L. monocytogenes subtypes may differ in their abilities to infect animals and to survive in farm environments.  相似文献   

3.
The prevalence of Listeria monocytogenes in the environment of dairy farms was surveyed from December 1993 to June 1994 in one city of Hokkaido. L. monocytogenes was isolated from 3 out of 5 farms investigated. Serovar 4b organism was isolated from the brain stem of a cow from one farm which was clinically diagnosed as having listeriosis. The same serovar of L. monocytogenes was also isolated from the rectal contents of a healthy cow, straw on the floor, straw in the barn, and silage scattered around the silo from the same farm. At another farm, with no reported cases of bovine listeriosis, serovar 1/2 organism was isolated from the same types of samples as the above mentioned farm except from straw on the floor. The difference in the isolation rates of the organism from straw on the floor between the two farms (22%: 5/23 vs 0%: 0/24) is considered to be caused by the different feeding methods of silage between the two farms.  相似文献   

4.
A case-control study involving 24 case farms with at least one recent case of listeriosis and 28 matched control farms with no listeriosis cases was conducted to probe the transmission and ecology of Listeria monocytogenes on farms. A total of 528 fecal, 516 feed, and 1,012 environmental soil and water samples were cultured for L. monocytogenes. While the overall prevalence of L. monocytogenes in cattle case farms (24.4%) was similar to that in control farms (20.2%), small-ruminant (goat and sheep) farms showed a significantly (P < 0.0001) higher prevalence in case farms (32.9%) than in control farms (5.9%). EcoRI ribotyping of clinical (n = 17) and farm (n = 414) isolates differentiated 51 ribotypes. L. monocytogenes ribotypes isolated from clinical cases and fecal samples were more frequent in environmental than in feed samples, indicating that infected animals may contribute to L. monocytogenes dispersal into the farm environment. Ribotype DUP-1038B was significantly (P < 0.05) associated with fecal samples compared with farm environment and animal feedstuff samples. Ribotype DUP-1045A was significantly (P < 0.05) associated with soil compared to feces and with control farms compared to case farms. Our data indicate that (i) the epidemiology and transmission of L. monocytogenes differ between small-ruminant and cattle farms; (ii) cattle contribute to amplification and dispersal of L. monocytogenes into the farm environment, (iii) the bovine farm ecosystem maintains a high prevalence of L. monocytogenes, including subtypes linked to human listeriosis cases and outbreaks, and (iv) L. monocytogenes subtypes may differ in their abilities to infect animals and to survive in farm environments.  相似文献   

5.
A survey was conducted between March and October of 1994 to determine the prevalence and identify the sources of serotype O157:H7 isolates of Escherichia coli in Wisconsin dairy herds. A stratified sample of 400 farms was identified, and 70 farms with weaned calves less than 4 months old were included in the study. During the prevalence study, 5 of the 70 farms (herd prevalence, 7.1 +/- 4.5%) and fecal samples from 10 of 560 calves (animal prevalence, 1.8%) tested positive for serotype O157:H7. In a follow-up study, the five O157:H7-positive farms and seven of the O157:H7-negative farms identified in the prevalence study were visited again. An additional 517 fecal samples from cattle of various ages were tested, and a total of 15 animals from four of the five herds that were previously positive and 4 animals from two of seven herds that were previously negative tested positive for E. coli O157:H7. Observations made during the follow-up study suggested that horizontal transmission was an important means of E. coli O157:H7 dissemination on the farms. A total of 302 environmental samples, were examined, and 2 animal drinking water samples from one previously negative farm and 1 animal drinking water sample from a previously positive farm contained E. coli O157:H7. Analyses by the pulsed-field gel electrophoresis technique of contour-clamped homogeneous electric field electrophoresis revealed that isolates from the same farm displayed identical or very similar XbaI restriction endonuclease digestion profiles (REDP), whereas isolates from different farms typically displayed different REDP. However, more than one REDP was usually observed for a given herd over the 8-month sampling period. Analyses of multiple isolates from an animal revealed that some animals harbored O157:H7 strains that had different REDP, although the REDP of isolates obtained from the same fecal sample were very similar. Collectively, 160 bovine isolates obtained from 29 different animals and three water isolates displayed 20 distinct XbaI REDP. Our data revealed that there are several clonal types of serotype O157:H7 isolates in Wisconsin and indicated that there is probably more than one source of this pathogen on the dairy farms studied. However, animal drinking water was identified as one source of E. coli O157:H7 on one farm.  相似文献   

6.
A dairy farm system trial was conducted between September 2003 and August 2005 to evaluate the effect of integration of maize silage forage on nitrous oxide (N2O) emissions. Potentially, the integration of low-protein forage (e.g. feeding cows with maize silage) to reduce dietary-nitrogen (N) concentration can mitigate environmental N emissions and increase N use efficiency. The dairy farm systems consisted of a maize supplementation system with a stocking rate of 3.8 cows ha?1 of grazed pasture with maize silage brought in and a control system with a stocking rate of 3.0 cows ha?1 of grazed pasture. Direct and indirect N2O emissions from all components of the farm systems were either measured using a closed chamber technique or calculated using the New Zealand IPCC inventory methodology. Annual average N2O emissions were slightly lower on the maize supplementation pasture than on the control pasture. Annual total N2O emissions from the “whole” farm systems (including direct and indict emissions from the grazed pastures, maize growing land, N fertilizer use and associated land application of farm effluent) were 7.71 and 8.00 kg N2O–N ha?1 of dairy farm on the control and maize supplement farm systems, respectively. The corresponding annual milk production was 13,437 and 17,925 kg ha?1. Therefore, the N2O emission per kg of milk production from the maize supplementation was 22% lower than that from the control system. This was due to the much greater efficiency of N use from low-protein maize silage than from pasture. The results suggest that the integration of low-protein forage can be an effective management practice to mitigate adverse environmental effects of increasing stocking rates in the New Zealand dairy farm systems, in terms of N2O emissions per unit of milk production.  相似文献   

7.
The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.  相似文献   

8.
Improved understanding of the ecology and epidemiology of Campylobacter in the poultry farm environment is key to developing appropriate farm-based strategies for preventing flock colonization. The sources of Campylobacter causing broiler flock colonization were investigated on one poultry farm and its environment, from which samples were obtained on three occasions during each of 15 crop cycles. The farm was adjacent to a dairy farm, with which there was a shared concreted area and secondary entrance. There was considerable variation in the Campylobacter status of flocks at the various sampling times, at median ages of 20, 26, and 35 days, with 3 of the 15 flocks remaining negative at slaughter. Campylobacters were recoverable from various locations around the farm, even while the flock was Campylobacter negative, but the degree of environmental contamination increased substantially once the flock was positive. Molecular typing showed that strains from house surroundings and the dairy farm were similar to those subsequently detected in the flock and that several strains intermittently persisted through multiple crop cycles. The longitudinal nature of the study suggested that bovine fecal Campylobacter strains, initially recovered from the dairy yard, may subsequently colonize poultry. One such strain, despite being repeatedly recovered from the dairy areas, failed to colonize the concomitant flock during later crop cycles. The possibility of host adaptation of this strain was investigated with 16-day-old chickens experimentally exposed to this strain naturally present in, or spiked into, bovine feces. Although the birds became colonized by this infection model, the strain may preferentially infect cattle. The presence of Campylobacter genotypes in the external environment of the poultry farm, prior to their detection in broiler chickens, confirms the horizontal transmission of these bacteria into the flock and highlights the risk from multispecies farms.  相似文献   

9.
41 clinical Listeria monocytogenes strains recovered from seven feto-maternal and 34 non-pregnancy associated cases of human listeriosis documented between 1997 and 2000 underwent serotyping and typing by pulsed-field gel electrophoresis (PFGE) applying the enzymes AscI, ApaI and SmaI. The pulsotypes of the clinical strains were compared to the pulsotypes of three L. monocytogenes strains isolated from healthy fecal carriers and nine reference strains isolated from seven outbreaks in Europe and the USA. The 41 clinical strains of Austrian provenance showed 37 pulsotypes. Five sets of two Austrian strains each were indistinguishable by PFGE typing. Epidemiological links were absent between these indistinguishable isolates. One unique pulsotype (AB) was found in three fecal isolates. Five pulsotypes (A, Q, R, AC and AD) were distinguished among the strains associated with outbreaks. Clusters consisting of two, five and six Austrian strains each were indistinguishable from the outbreak-associated pulsotypes A, Q and R, respectively, after PFGE analysis with AscI. Three strains of AscI pulsotype Q and five strains of AscI pulsotype R could be further differentiated by restriction with ApaI and SmaI. One strain each from sporadic cases shared a combined pulsotype with the outbreak strains of pulsotypes A and R, respectively. These PFGE data suggest that a similar genetic background can be found in strains which have been contributing to outbreaks world-wide and in isolates associated with sporadic listeriosis in Austria.  相似文献   

10.
The ability to adhere to human intestinal mucus was tested for lactic acid bacteria of clinical blood culture, human fecal and dairy origin. The blood culture isolates were found to adhere better than the dairy strains. Of the Lactobacillus rhamnosus strains (nine clinical, 10 fecal and three dairy), blood culture isolates adhered better than the fecal strains. Although these results indicate a trend for blood culture isolates to bind to intestinal mucus in higher numbers than strains of dairy and human fecal origin, other factors are also likely to be involved in the etiology of lactobacillemia since some of the clinical Lactobacillus isolates exhibited a relatively low level of adhesion.  相似文献   

11.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

12.
The prevalence and antimicrobial susceptibilities of Campylobacter spp. isolates from bovine feces were compared between organic and conventional dairy herds. Thirty organic dairy herds, where antimicrobials are rarely used for calves and never used for cows, were compared with 30 neighboring conventional dairy farms, where antimicrobials were routinely used for animals for all ages. Fecal specimens from 10 cows and 10 calves on 120 farm visits yielded 332 Campylobacter isolates. The prevalence of Campylobacter spp. in organic and conventional farms was 26.7 and 29.1%, and the prevalence was not statistically different between the two types of farms. Campylobacter prevalence was significantly higher in March than in September, higher in calves than in cows, and higher in smaller farms than in large farms. The rates of retained placenta, pneumonia, mastitis, and abortion were associated with the proportion of Campylobacter isolation from fecal samples. The gradient disk diffusion MIC method (Etest) was used for testing susceptibility to four antimicrobial agents: ciprofloxacin, gentamicin, erythromycin, and tetracycline. Two isolates were resistant to ciprofloxacin, and none of isolates was resistant to gentamicin or erythromycin. Resistance to tetracycline was 45% (148 of 332 isolates). Tetracycline resistance was found more frequently in calves than in cows (P = 0.042), but no difference was observed between organic and conventional farms. When we used Campylobacter spp. as indicator bacteria, we saw no evidence that restriction of antimicrobial use on dairy farms was associated with prevalence of resistance to ciprofloxacin, gentamicin, erythromycin, and tetracycline.  相似文献   

13.
Dairy farms are a reservoir for Listeria monocytogenes, and the reduction of this pathogen at the farm level is important for reducing human exposure. The objectives of this research were to study the diversity of L. monocytogenes strains on a single dairy farm, assess strain dynamics within the farm, identify potential sources of L. monocytogenes in bulk tank milk and milk filters, and assess the adherence abilities of representative strains. A total of 248 L. monocytogenes isolates were analyzed by pulsed-field gel electrophoresis (PFGE). Combined AscI and ApaI restriction analysis yielded 40 PFGE types (strains). The most predominant strains were T (28.6%), D (22.6%), and F (14.9%). A high level of heterogeneity of strains among isolates from fecal (Simpson's index of diversity [SID] = 0.96) and environmental (SID = 0.96) samples was observed. A higher homogeneity of strains was observed among isolates from milk filters (SID = 0.71) and bulk tank milk (SID = 0.65). Six of 17 L. monocytogenes isolates (35.3%) were classified in an in vitro assay as having a "low adherence ability," 9 (52.9%) were classified as having a "medium adherence ability," and 2 (11.8%) were classified as having a "high adherence ability." The L. monocytogenes strains that were predominant and persistent showed significantly better adherence than did strains that were only sporadic, predominant, or persistent (P = 0.0006). Our results suggest that the milking system was exposed to several L. monocytogenes strains from different sources. Only 3 strains, however, were successful in persisting within the milking system, suggesting that some strains are more suitable to that particular ecological environment than others.  相似文献   

14.
A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis.  相似文献   

15.
A total of 153 strains of Listeria monocytogenes isolated from different sources (72 from sheep, 12 from cattle, 18 from feedstuffs, and 51 from humans) in Spain from 1989 to 2000 were characterized by pulsed-field gel electrophoresis. The strains of L. monocytogenes displayed 55 pulsotypes. The 84 animal, 51 human, and 18 feedstuff strains displayed 31, 29, and 7 different pulsotypes, respectively, indicating a great genetic diversity among the Spanish L. monocytogenes isolates studied. L. monocytogenes isolates from clinical samples and feedstuffs consumed by the diseased animals were analyzed in 21 flocks. In most cases, clinical strains from different animals of the same flock had identical pulsotypes, confirming the existence of a listeriosis outbreak. L. monocytogenes strains with pulsotypes identical to those of clinical strains were isolated from silage, potatoes, and maize stalks. This is the first study wherein potatoes and maize stalks are epidemiologically linked with clinical listeriosis.  相似文献   

16.
Fecal shedding is an important mechanism of spreading of a number of human and animal pathogens. Understanding of the dynamics of pathogen fecal shedding is critical to be able to control or prevent the spread of diseases caused by these pathogens. The objective of this study was to develop a model for analysis of the dynamics of pathogen fecal shedding. Fecal shedding of Listeria monocytogenes in dairy cattle was used as a model system. A Markov chain model (MCM) with two states, shedding and non-shedding, has been developed for overall L. monocytogenes fecal shedding (all L. monocytogenes subtypes) and fecal shedding of three L. monocytogenes subtypes (ribotypes 1058A, 1039E and 1042B) using data from one study farm. The matrices of conditional probabilities of transition between shedding and non-shedding states for different sets of covariates have been estimated by application of logistic regression. The covariate-specific matrices of conditional probabilities, describing the presence of different risk factors, were used to estimate (i) the stationary prevalence of dairy cows that shed any L. monocytogenes subtype or ribotypes 1058A, 1039E, and 1042B, (ii) the duration of overall and subtype specific fecal shedding, and (iii) the duration of periods without shedding. A non-homogeneous MCM was constructed to study how the prevalence of fecal shedders changes over time. The model was validated with data from the study farm and published literature. The results of our modeling work indicated that (i) the prevalence of L. monocytogenes fecal shedders varies over time and can be higher than 90%, (ii) L. monocytogenes subtypes exhibit different dynamics of fecal shedding, (iii) the dynamics of L. monocytogenes fecal shedding are highly associated with contamination of silage (fermented feed) and cows' exposure to stress, and (iv) the developed approach can be readily used to study the dynamics of fecal shedding in other pathogen-host-environment systems.  相似文献   

17.
Aims:  To identify and characterize the major lactic acid bacteria in the rumen of dairy cattle grazing improved pasture of rye grass and white clover and receiving a maize silage and grain supplement with and without virginiamycin.
Methods and Results:  Eighty-five bacterial isolates were obtained from the rumen of 16 Holstein-Friesian dairy cows. The isolates were initially grouped on the basis of their Gram morphology and by restriction fragment length polymorphism analysis of the PCR amplified 16S rDNA. A more definitive analysis was undertaken by comparing the 16S rDNA sequences. Many of the isolates were closely related to other previously characterized rumen bacteria, including Streptococcus bovis, Lactobacillus vitulinus , Butyrivibrio fibrisolvens , Prevotella bryantii and Selenomonas ruminantium . The in vitro production of l - and/or d -lactate was seen with all but five of the isolates examined, many of which were also resistant to virginiamycin.
Conclusion:  Supplementation of grain with virginiamycin may reduce the risk of acidosis but does not prevent its occurrence in dairy cattle grazing improved pasture.
Significance and Impact of the Study:  This study shows that lactic acid production is caused, not only by various thoroughly researched types of bacteria, but also by others previously identified in the rumen but not further characterized.  相似文献   

18.
Listeria app, isolated from 13 of 129 (10%) corn silage samples, 21 of 76 (28%) hay silage samples, and 3 of 5 (60%) grass silage samples during a previous Vermont survey were subjected to automated ribotype (RT) analysis. The 13 positive corn silage samples contained 3 Listeria monocytogenes isolated (three RTs, including one known clinical RT) and 10 L. innocua isolates (four RTs). Similarly, 2 L. monocytogenes isolates (two RTs) and 19 L. innocua isolates (three RTs) were identified in the 21 positive hay silage samples. The three positive grass silage samples contained two L. innocua isolates (two RTs) and one isolate of L. welshimeri. One hundred seven of 129 (83%) high-quality (pH < 4.0) corn silage samples accounted for 8 of 13 Listeria isolates from corn silage, including isolates belonging to one L. monocytogenes clinical RT. In contrast, low-quality hay silage (70 of 76 [92%] samples having a pH of > or = 4.0) harbored 20 of 21 isolates, including isolates belonging to two nonclinical L. monocytogenes RTs. Poor-quality silage is readily discernible by appearance; however, these findings raise new concerns regarding the safety of high-quality (pH < 4.0) corn silage, which can contain Listeria spp., including L. monocytogenes strains belonging to RTs of clinical importance in cases of food-borne listeriosis.  相似文献   

19.
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P < 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.  相似文献   

20.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号