首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geographic structure of Daphnia pulex populations from the central United States is analyzed with respect to isozyme and mitochondrial DNA variation. The species complex consists of cyclic and obligate parthenogens. A hierarchical analysis of population structure in the cyclic parthenogens by using a fixation-index approach indicates that this is one of the most extremely subdivided species yet studied. This genetic structure, much of which accrues within 100 km, is certainly due in part to the limited dispersal ability of Daphnia. However, previous work has shown that fluctuating selection can account for the spatial heterogeneity in isozyme frequencies in these populations. This may explain why the population subdivision for the mitochondrial genome increases approximately three times as rapidly with distance as does that for nuclear genes, which is slower than the neutral expectation. The obligate parthenogens are shown to be polyphyletic in origin, evolutionarily young, and, in some cases, geographically widespread.  相似文献   

2.
Beta-peptides are emerging as an attractive class of peptidomimetic molecules. In contrast to naturally occurring alpha-peptides, short oligomers of beta-amino acids (comprising just 4-6 monomers) exhibit stable secondary structures that make them amenable for quantitative, concerted experimental and theoretical studies of the effects of particular chemical interactions on structure. In this work, molecular simulations are used to study the thermodynamic stability of helical conformations formed by beta-peptides containing varying proportions of acyclic (beta(3)) and cyclic (ACH) residues. More specifically, several beta-peptides differing only in their content of cyclic residues are considered in this work. Previous computational studies of beta-peptides have relied mostly on energy minimization of molecular dynamics simulations. In contrast, our study relies on density-of-states based Monte Carlo simulations to calculate the free energy and examine the stability of various folded structures of these molecules along a well-defined order parameter. By resorting to an expanded-ensemble formalism, we are able to determine the free energy required to unfold specific molecules, a quantity that could be measured directly through single-molecule force spectroscopy. Simulations in both implicit and explicit solvents have permitted a systematic study of the role of cyclic residues and electrostatics on the stability of secondary structures. The molecules considered in this work are shown to exhibit stable H-14 helical conformations and, in some cases, relatively stable H-12 conformations, thereby suggesting that solvent quality may be used to manipulate the hydrogen-bonding patterns and structure of these peptides.  相似文献   

3.
PAF-acether can be transformed into analogs by the phospholipase D enzyme activity of Streptomyces sp. In this reaction choline is replaced by primary cyclic alcohols (acceptors). The reaction products, cyclic phospholipid and phosphatidic acid, were separated by silicic acid chromatography. This procedure enabled us to synthetize five analogs of PAF-acether, with a cyclic ring structure. The primary cyclic alcohols used in this work were: 3-(2-hydroxyethyl)-indol, OH-Et-I; 2-(hydroxymethyl)-1,4-benzodioxan, OH-Met-BZD; N-(2-hydroxyethyl)-phthalimide, OH-Et-PHT; 2-(2-thienyl)-ethanol, Th-EtOH; (1-R)-(-)-Nopol, R-NOP.  相似文献   

4.
In this work, it is shown that in a deterministic context, a threshold policy can induce cyclic behavior in an otherwise exploited stable population. These dynamics ensue as a result of the combination of the degree of harvesting pressure and more protective threshold densities. Virtual equilibrium in variable structure systems plays a determinant role in this dynamical outcome.  相似文献   

5.
Numerous cellular biochemical events caused by hormones are mediated throught cyclic AMP. Although many changes occur in the cell during exercise that could be attributed to this nucleotide, little evidence is available implicating it as an important regulator of exercise metabolism. In this investigation it was found that a 60 min bout of treadmill exercise caused a 2.4-fold increase in myocardial cyclic AMP immediately following the work. Rather than the imemediate nucleotide hydrolysis that was expected, it was found that the elevated cyclic AMP level remained for approx. 24 h before returning to control levels. Cardiac glycogen fell to 30% of control after work but supercompensated 60% above control within 1 h following exercise. Therefore, cardiac cyclic AMP was elevated at a time when glycogen was being synthesized. Study of the temporal relationship between the exercise-induced increase in cyclic AMP and cyclic nucleotide phosphodiesterase indicated that the work caused an increase in the hearts' capacity to hydrolyze cyclic AMP. Measurement of heart phosphodiesterase at substrate concentrations of 1.0 and 100 μM produced significant increased in enzyme activity immediately following exercise which remained elevated for 48 h and was back to control activity 96 h following work. These data present a potentially fascinating model for the study of the dissociation between cyclic AMP, glycogenesis and elevations in phosphodiesterase activity in the heart.  相似文献   

6.
Numerous cellular biochemical events caused by hormones are mediated through cyclic AMP. Although many changes occur in the cell during exercise that could be attributed to this nucleotide, little evidence is available implicating it as an important regulator of exercise metabolism. In this investigation it was found that a 60 min bout of treadmill exercise caused a 2.4-fold increase in myocardial cyclic AMP immediately following the work. Rather than the immediate nucleotide hydrolysis that was expected, it was found that the elevated cyclic AMP level remained for approx. 24 h before returning to control levels. Cardiac glycogen fell to 30% of control after work but supercompensated 60% above control within 1 h following exercise. Therefore, cardiac cyclic AMP was elevated at a time when glycogen was being synthesized. Study of the temporal relationship between the exercise-induced increase in cyclic AMP and cyclic nucleotide phosphodiesterase indicated that the work caused an increase in the hearts' capacity to hydrolyze cyclic AMP. Measurement of heart phosphodiesterase at substrate concentrations of 1.0 and 100 microM produced significant increases in enzyme activity immediately following exercise which remained elevated for 48 h and was back to control activity 96 h following work. These data present a potentially fascinating model for the study of the dissociation between cyclic AMP, glycogenesis and elevations in phosphodiesterase activity in the heart.  相似文献   

7.
The dynamics of shrews association in the mountain taiga of the Eastern Sayan was considered during the years 1981 to 2010. The work was carried out in the territory of “Stolby” reserve. The structure of the association, the duration of cyclic changes of different species, effect of succession and climatic processes on the composition and structure of the community have been studied.  相似文献   

8.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

9.
The solution structure of eight cyclic pentapeptides has been determined by two-dimensional 1H-NMR spectroscopy combined with spectra simulations and restrained molecular dynamic simulations. Six of the cyclic pentapeptides were derived from the C-terminal cholecystokinin fragment CCK-4 enlarged with Asp1 resulting in the sequence (Asp-Trp-Met-Asp-Phe), one L-amino acid after the other was substituted by its D-analog. In addition, two peptides, including an all-L-amino-acid-containing cyclic pentapeptide, cyclo(Asp-Phe-Lys-Ala-Thr) and cyclo(Asp-Phe-Lys-Ala-D-Thr) were investigated. All D-amino-acid-containing peptides show beta II'-turn conformations with the D-amino acid in the i + 1 position, excepting the D-aspartic-acid-containing peptides. These two peptides are characterized by the lack of beta-turns at pH values less than 4, suggesting that D-aspartic acid in the full-protonized state avoids the formation of beta-turns in these compounds. At pH values greater than 5, a conformational change into the beta II'-turn conformation was also observed for these peptides. Conformations without beta-turns are expected for cyclic all-L pentapeptides, but both cyclo(Asp-Phe-Lys-Ala-Thr) and the D-Thr analog cyclo(Asp-Phe-Lys-Ala-D-Thr) exhibit beta II'-turn conformations around Thr-Asp and D-Thr-Asp. Thus cyclic all-L pentapeptides and those with one D-amino acid are able to form similar structures preferably with a beta II'-turn. The beta-turn formation in cyclic pentapeptides containing a D-aspartic acid is dependent on the ionization state. The relevance of the work to the design of beta'-turn mimetics is discussed.  相似文献   

10.
Won HS  Yamazaki T  Lee TW  Yoon MK  Park SH  Kyogoku Y  Lee BJ 《Biochemistry》2000,39(45):13953-13962
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding.  相似文献   

11.
Cheng J  Ji R  Gao SJ  Du FS  Li ZC 《Biomacromolecules》2012,13(1):173-179
This work presents a facile approach for preparation of acid-labile and biocompatible polymers with pendent cyclic ortho esters, which is based on the efficient and mild reactions between cyclic ketene acetal (CKA) and hydroxyl groups. Three CKAs, 2-ethylidene-1,3-dioxane (EDO), 2-ethylidene-1,3-dioxolane (EDL), and 2-ethylidene-4- methyl-1,3-dioxolane (EMD) were prepared from the corresponding cyclic vinyl acetals by catalytic isomerization of the double bond. The reaction of CKAs with different alcohols and diols was examined using trace of p-toluenesulfonic acid as a catalyst. For the monohydroxyl alcohols, cyclic ortho esters were formed by simple addition of the hydroxyl group toward CKAs with ethanol showing a much greater reactivity than iso-propanol. When 1,2- or 1,3-diols were used to react with the CKAs, we observed the isomerized cyclic ortho esters besides the simple addition products. Biocompatible polyols, that is, poly(2-hydroxyethyl acrylate) (PHEA) and poly(vinyl alcohol) (PVA) were then modified with CKAs, and the degree of substitution of the pendent ortho esters can be easily tuned by changing feed ratio. Both the small molecule ortho esters and the CKA-modified polymers demonstrate the pH-dependent hydrolysis profiles, which depend also on the chemical structure of the ortho esters as well as the polymer hydrophobicity.  相似文献   

12.
Laser Raman spectra of bradykinin in water, deuterium oxide, and the solid phase were recorded. From the spectra it was concluded that bradykinin conformation is comprised of ordered and unordered structure. The ordered structure appears to be some form of reverse turn. Furthermore, it seems that there is an enhancement of the turn structure in the solid phase. A cyclic cystine containing analog of bradykinin was also examined with Raman spectroscopy. The cyclic bradykinin analog gives a Raman spectrum very similar to that of the linear bradykinin and therefore must share similar conformational forms with bradykinin. The restrictive Cys-Cys disulfide in the cyclic bradykinin must serve to maintain a conformation acceptable to bradykinin receptors since the cyclic peptide exhibits biological activity.  相似文献   

13.
KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating.  相似文献   

14.
Guang Song 《Proteins》2017,85(9):1741-1758
In PDB, more than half of the entries are structure complexes and of these complexes, most are symmetric, composed of identical subunits. Complex formation is the way through which larger structures and even molecular machines are assembled and built in nature. In this work, we apply group theory and carry out a comprehensive study of the global motion patterns of protein complexes of various symmetries. The work presents for the first time a comprehensive list of all the symmetric, aesthetically pleasing, global motion patterns available to complexes of cyclic, dihedral, tetrahedral, or octahedral symmetry. Our results clearly demonstrate that complexes with the same symmetry will have the same global motion patterns and thus may function in a similar way, and that there are only a finite number of global motion patterns available to symmetric complexes as the number of protein symmetry groups is effectively finite. The work complements our current understanding of the principle of complex formation that has been mostly structure‐based by providing novel dynamics‐based insights. Furthermore, as dynamics is closely tied to function, these motion patterns can provide global insights into the general functional mechanisms of protein complexes.  相似文献   

15.
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.  相似文献   

16.
The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.  相似文献   

17.
Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant β-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).  相似文献   

18.
Cyclomaltooligosaccharides (cyclodextrins, CDs) are cyclic oligomers having six, seven, or eight units of alpha-D-glucose, named as cyclomaltohexaose (alpha-CD), cyclomaltoheptaose (beta-CD) and cyclomaltooctaose (gamma-CD), respectively. The molecule of CD has a cavity in which the interior is hydrophobic relative to its outer surface. The solubility of cyclodextrins in water is unusual, as an irregular trend is observed in the series of the cyclic oligomers of glucose. beta-CD is at least nine times less soluble than the others CDs. This intriguing behavior has been investigated, and some interesting explanations in terms of the effect caused by CD on the water lattice structure have been proposed. In this work a comparative study on the solubility of alpha, beta, and gamma-cyclodextrins was carried out in H2O and D2O and reveals a much lower solubility of the three CDs in D2O. The solid-phase structure of the CDs in equilibrium with the solution is quite similar with both solvents. The results are discussed in terms of the CD molecular structure and the differences in the hydrogen bonds formed between H2O and D2O.  相似文献   

19.
Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.  相似文献   

20.
The results of conformational analysis of linear and cyclic peptides from the 276SALLEDPVG(284) sequence of glycoprotein D of Herpes simplex virus are presented. The epitope peptides were synthesized by SPPS and on resin cyclization was applied for preparation of cyclic compounds. Circular dichroism spectroscopy, Fourier-transform infrared spectroscopy and nuclear magnetic resonance (NMR) were used to determine of the solution structure of both linear and cyclic peptides. The results indicated that the cyclopeptides containing the core of the epitope (DPVG) as a part of the cycle have more stable beta-turn structure than the linear peptides or the cyclic analogues, where the core motif is not a part of the cycle. NMR study of H-SALLc(EDPVGK)-NH(2) confirm presence of a type I beta-turn structure which includes the DPVG epitope core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号