首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A molecular dynamics simulation (1.1 ns) at 300 K, of fully hydrated Ile21Cys, Glu25Cys plastocyanin mutant has been performed to investigate the structural, dynamical and functional effects of a disulfide bridge insertion at the surface of the protein. A detailed analysis of the root mean square fluctuations, H-bonding pattern and dynamical cross-correlation map has been performed. An essential dynamics method has also been applied as complementary analysis to identify concerted motions (essential modes), that could be relevant to the electron transfer function. The results have been compared with those previously obtained for wild-type plastocyanin and have revealed that the mutant shows a different pattern of H-bonds, with several interactions lost and a higher flexibility, especially around the electron transfer copper site. The analysis of dynamical cross-correlation map and of essential modes, has shown that the mutant performs different functional concerted motions, which might be related to the binding recognition with its electron transfer partners in comparison with the wild-type protein.  相似文献   

2.
The study of the electronic conduction through plastocyanin (PC) mutants assembled on a gold surface has been addressed by scanning tunneling spectroscopy. The two mutants exploit a single thiol group (PCSH) or a disulfide bridge (PCSS) to covalently bind at gold surface. The I-V measurements were performed by positioning the STM tip on top of a single molecule and sweeping the bias potential between +/-1 V, under both ambient and controlled atmosphere. For PCSS, under ambient conditions, asymmetric I-V characteristics were obtained, which disappear under nitrogen atmosphere. PCSH, instead shows a symmetric I-V relation in air and under nitrogen environment. Here, as factors underlying this distinct electron conductive behaviour, a potential role for hydration water molecules and for copper redox levels are discussed.  相似文献   

3.
MD simulation of a plastocyanin mutant adsorbed onto a gold surface   总被引:3,自引:0,他引:3  
MD simulation of plastocyanin, an electron transfer protein, adsorbed onto a gold surface, has been performed for 10 ns. Starting from the crystallographic structure of a poplar plastocyanin mutant engineered with the insertion of a disulfide bridge, the protein has been anchored to a gold substrate modeled by a cluster of three layers in the Au<111> configuration. A number of significant structural and dynamical properties of the protein molecule, covalently bound through either one or two sulfur atoms to the gold surface, has been extracted and compared with those of the free protein. Attention has been paid to investigate the dynamical aspects putatively related to the electron transfer process. In particular, the cross-correlation function between specific active site vibrations and all the other protein atom motions and the principal component analysis have been calculated in order to put into evidence dynamical correlation of some functional relevance. The results are discussed also in connection with related experiments.  相似文献   

4.
We have previously reported the scanning tunnelling microscopy (STM) imaging under buffer of the heme monooxygenase cytochrome P450(cam) from Pseudomonas putida [Faraday Discuss. 116 (2000) 1]. We describe here the adsorption and STM imaging under buffer of complexes of a mutant of cytochrome P450(cam), K344C, and wild-type putidaredoxin (Pdx) on gold(111). The images of Pdx on its own on gold(111) are not uniform, presumably due to multiple orientations of protein adsorption because of the presence of five or more cysteines on the protein surface. STM imaging of a 1:1 mixture of P450(cam)-K344C/Pdx showed a regular array of pairs of different-sized proteins 20-25 A apart arranged in rows across the gold(111) surface which we attribute to the P450(cam)/Pdx complex. The images of the pairs are more regular than those of Pdx on its own, probably as a result of complex formation with P450(cam) partly overcoming the heterogeneity of Pdx adsorption. As far as we are aware this is the first report of STM imaging of a protein/protein complex, and the first direct observation of P450(cam)/Pdx complex formation which is a key step in the catalytic cycle of P450(cam) catalysis. The redox centers of the two proteins are ca. 20 A apart, too far for rapid intracomplex electron transfer. Whether the observed complex is competent for electron transfer or physiologically relevant is not known, and further work is in progress to elucidate the protein-protein interaction.  相似文献   

5.
Ultra thin film of photosensitive polyimide having benzene and sulfonyloxyimide moieties in the main chain was prepared using a Langmuir-Blodgett (LB) technique, and then micro array pattern of the polyimide LB film on a gold substrate was obtained by deep UV lithographic technique. In order to array cytochrome c molecules along the micro-patterned gold substrate, the well-characterized monolayer of cytochrome c was immobilized with a mixed monolayer of 11-mercaptoundecanoic acid (11-MUDA) and decanethiol. The redox activity and electron transfer between cytochrome c molecular center and gold electrode interface for the self-assembled cytochrome c monolayer were investigated by cyclic voltammetry measurement. Biomolecular photodiode consisting of cytochrome c and green fluorescent protein (GFP) onto the patterned gold substrate was fabricated by self-assembly process. The integration and morphology of cytochrome c and GFP were studied from the measurements of atomic force microscopy (AFM) and fluorescence emission. Especially, current-voltage characteristics of the protein multilayers were investigated by scanning tunneling microscopy (STM) and its application in biomolecular photodiode was also examined.  相似文献   

6.
Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.  相似文献   

7.
Inaba K  Ito K 《The EMBO journal》2002,21(11):2646-2654
Protein disulfide bond formation in the bacterial periplasm is catalyzed by the Dsb enzymes in conjunction with the respiratory quinone components. Here we characterized redox properties of the redox active sites in DsbB to gain further insights into the catalytic mechanisms of DsbA oxidation. The standard redox potential of DsbB was determined to be -0.21 V for Cys41/Cys44 in the N-terminal periplasmic region (P1) and -0.25 V for Cys104/Cys130 in the C-terminal periplasmic region (P2), while that of Cys30/Cys33 in DsbA was -0.12 V. To our surprise, DsbB, an oxidant for DsbA, is intrinsically more reducing than DsbA. Ubiquinone anomalously affected the apparent redox property of the P1 domain, and mutational alterations of the P1 region significantly lowered the catalytic turnover. It is inferred that ubiquinone, a high redox potential compound, drives the electron flow by interacting with the P1 region with the Cys41/Cys44 active site. Thus, DsbB can mediate electron flow from DsbA to ubiquinone irrespective of the intrinsic redox potential of the Cys residues involved.  相似文献   

8.
Complexes of Photosynthetic Redox Proteins Studied by NMR   总被引:2,自引:2,他引:0  
In the photosynthetic redox chain, small electron transfer proteins shuttle electrons between the large membrane-associated redox complexes. Short-lived but specific protein:protein complexes are formed to enable fast electron transfer. Recent nuclear magnetic resonance (NMR) studies have elucidated the binding sites on plastocyanin, cytochrome c (6) and ferredoxin. Also the orientation of plastocyanin in complex with cytochrome f has been determined. Based on these results, general features that enable the formation of such transient complexes are discussed.  相似文献   

9.
The catalytically competent active-site structure of a true acylenzyme reaction intermediate of TEM-1 beta-lactamase formed with the kinetically specific spin-labeled substrate 6-N-(2,2,5,5-tetramethyl-1-oxypyrrolinyl-3-carboxyl)-penicillanic acid isolated under cryoenzymologic conditions has been determined by angle-selected electron nuclear double resonance (ENDOR) spectroscopy. Cryoenzymologic experiments with use of the chromophoric substrate 6-N-[3-(2-furanyl)-propen-2-oyl]-penicillanic acid showed that the acylenzyme reaction intermediate could be stabilized in the -35 to -75 degrees C range with a half-life suitably long to allow freeze-quenching of the reaction species for ENDOR studies while a noncovalent Michaelis complex could be optically identified at temperatures only below -70 degrees C. The wild-type, Glu166Asn, Glu240Cys, and Met272Cys mutant forms of the mature enzyme were overexpressed in perdeuterated minimal medium to allow detection and assignment of proton resonances specific for the substrate and chemically modified amino acid residues in the active site. From analysis of the dependence of the ENDOR spectra on the setting of the static laboratory magnetic field H0, the dipolar contributions to the principal hyperfine coupling components were estimated to calculate the separations between the unpaired electron of the nitroxyl group and isotopically identified nuclei. These electron-nucleus distances were applied as constraints to assign the conformation of the substrate in the active site and of amino acid side chains by molecular modeling. Of special interest was that the ENDOR spectra revealed a water molecule sequestered in the active site of the acylenzyme of the wild-type protein that was not detected in the deacylation impaired Glu166Asn mutant. On the basis of the X-ray structure of the enzyme, the ENDOR distance constraints placed this water molecule within hydrogen-bonding distance to the carboxylate side chain of glutamate-166 as if it were poised for nucleophilic attack of the scissile ester bond. The ENDOR results provide experimental evidence of glutamate-166 in its functional role as the general base catalyst in the wild-type enzyme for hydrolytic breakdown of the acylenzyme reaction intermediate of TEM-1 beta-lactamase.  相似文献   

10.
Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Gunnar Fröman 《FEBS letters》1982,143(2):220-224
Absorption, circular dichroism, electron spin resonance and resonance Raman spectra of a blue copper protein, plantacyanin from cucumber peel have been measured and these spectral properties compared with those of other blue copper proteins. From the spectral properties, amino acid analysis and redox potential, we discuss the active site and redox properties of this protein.  相似文献   

12.
Glutaredoxin is essential for the glutathione (GSH)-dependent synthesis of deoxyribonucleotides by ribonucleotide reductase, and in addition, it displays a general GSH disulfide oxidoreductase activity. In Escherichia coli glutaredoxin, the active site contains a redox-active disulfide/dithiol of the sequence Cys11-Pro12-Tyr13-Cys14. In this paper, we have prepared and characterized the Cys14----Ser mutant of E. coli glutaredoxin and its mixed disulfide with glutathione. The Cys14----Ser mutant of glutaredoxin is shown to retain 38% of the GSH disulfide oxidoreductase activity of the wild-type protein with hydroxyethyl disulfide as substrate but to be completely inactive with ribonucleotide reductase, demonstrating that dithiol glutaredoxin is the hydrogen donor for ribonucleotide reductase. The covalent structure of the mixed disulfide of glutaredoxin(C14S) with GSH prepared with 15N-labeling of the protein was confirmed with nuclear magnetic resonance (NMR) spectroscopy, establishing a basis for NMR structural studies of the glutathione binding site on glutaredoxin.  相似文献   

13.
Recent studies [Mallett, T. C., and Claiborne, A. (1998) Biochemistry 37, 8790-8802] of the O2 reactivity of C42S NADH oxidase (O2 --> H2O2) revealed an asymmetric mechanism in which the two FADH2.NAD+ per reduced dimer display kinetic inequivalence. In this report we provide evidence indicating that the fully active, recombinant wild-type oxidase (O2 --> 2H2O) displays thermodynamic inequivalence between the two active sites per dimer. Using NADPH to generate the free reduced wild-type enzyme (EH2'/EH4), we have shown that NAD+ titrations lead to differential behavior as only one FADH2 per dimer binds NAD+ tightly to give the charge-transfer complex. The second FADH2, in contrast, transfers its electrons to the single Cys42-sulfenic acid (Cys42-SOH) redox center, which remains oxidized during the reductive titration. Titrations of the reduced NADH oxidase with oxidized 3-acetylpyridine and 3-aminopyridine adenine dinucleotides further support the conclusion that the two FADH2 per dimer in wild-type enzyme can be described as distinct "charge-transfer" and "electron-transfer" sites, with the latter site giving rise to either intramolecular (Cys42-SOH) or bimolecular (pyridine nucleotide) reduction. The reduced C42S mutant is not capable of intramolecular electron transfer on binding pyridine nucleotides, thus confirming that the Cys42-SOH center is in fact the source of the redox asymmetry observed with wild-type oxidase. These observations on the role of Cys42-SOH in the expression of thermodynamic inequivalence as observed in wild-type NADH oxidase complement the previously described kinetic inequivalence of the C42S mutant; taken together, these results provide the overlapping framework for an alternating sites cooperativity model of oxidase action.  相似文献   

14.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

15.
A method for fluorescence detection of a protein's redox state based on resonance energy transfer from an attached fluorescence label to the prosthetic group of the redox protein is described and tested for proteins containing three types of prosthetic groups: a type-1 copper site (azurin, amicyanin, plastocyanin, and pseudoazurin), a heme group (cytochrome c550), and a flavin mononucleotide (flavodoxin). This method permits one to reliably distinguish between reduced and oxidized proteins and to perform potentiometric titrations at submicromolar concentrations.  相似文献   

16.
Dong S  Ybe JA  Hecht MH  Spiro TG 《Biochemistry》1999,38(11):3379-3385
Type I Cu proteins maintain a trigonal N2S coordination group (with weak axial ligation) in both oxidation states of the Cu2+/+ ion, thereby reducing the reorganization energy for electron transfer. Requirements for maintaining this coordination group were investigated in poplar plastocyanin (Pcy) by mutation of a conserved element of the type 1 architecture, an asparagine residue (Asn38) adjacent to one of the ligating histidines. The side chain of this asparagine forms an active site clasp via two H-bonds with the residue (Ser85) adjacent to the ligating cysteine (Cys84). In addition, the main chain NH of Asn38 donates an H-bond to the thiolate ligand. We have investigated the importance of these interactions by mutating Asn38 to Gln, Thr, and Leu. The mutant proteins are capable of folding and binding Cu2+, but the blue color fades; the rate of fading increases in the order Gln < Thr < Leu. The color is not restored by ferricyanide, showing that the protein is modified irreversibly, probably by oxidation of Cys84. The more stable mutants N38Q and N38T were characterized spectroscopically. The wild-type properties are slightly perturbed for N38Q, but N38T shows remarkable similarity to another type 1 Cu protein, azurin (Azu) from Pseudomonas aeruginosa. The Cu-S(Cys) bond is longer in Azu than in Pcy, and the NH H-bond to the ligating S atom is shorter. Molecular modeling suggests a similar effect for N38T because the threonine residue shifts toward Ser85 in order to avoid a steric clash and to optimize H-bonding. These results demonstrate that H-bonding adjacent to the type 1 site stabilizes an architecture which both modulates the electronic properties of the Cu, and suppresses side reactions of the cysteine ligand.  相似文献   

17.
The electron transfer reactions between a lipid bilayer-modified gold electrode and oxidized spinach plastocyanin have been studied by cyclic voltammetry, using either an electrically neutral phosphatidylcholine (PC) bilayer or a positively charged PC bilayer containing 40 mol% dimethyldioctadecylammonium chloride, at two ionic strengths of electrolyte (0.02 and 0.2 M NaClO4). Plastocyanin was found to interact strongly enough with the lipid membrane to support an efficient electron transfer reaction with the electrode. The interaction forces, and therefore the mode of diffusion of plastocyanin molecules to the electrode, which limits the electron transfer rate, could be controlled by the PC concentration. At low lipid concentrations (0-5 mg/ml), electrostatically attractive interactions between specific microelectroactive sites on the surface of the lipid membrane and plastocyanin molecules predominate, producing a radial mode of diffusion of the protein molecules to the electrode surface. On the other hand, at high lipid concentrations (greater than 5 mg/ml), interaction between plastocyanin and the lipid membrane occurs via hydrophobic forces, and a linear diffusion of protein molecules limits the electron transfer process. These observations support and extend other experimental and theoretical results which indicate two possible sites on the surface of the plastocyanin molecule, one hydrophobic and one negatively charged, which are able to participate in electron transfer reactions. We conclude that electrochemical measurements with the present system provide a new approach to the study of redox protein-membrane interactions.  相似文献   

18.
Gorman DS  Levine RP 《Plant physiology》1966,41(10):1637-1642
The copper protein plastocyanin has been found to be an essential component of the photosynthetic electron transport chain of Chlamydomonas reinhardi, and in this paper we describe a method for its isolation and purification from the wild-type strain. In addition, we describe some of its properties and compare them with those reported for spinach plastocyanin.  相似文献   

19.
Plastocyanin is a copper protein found in photosynethetic tissue and it exhibits the properties of a physiological redox reagent. This protein has been purified from the blue-green alga Anabaena variabilis. Plastocyanin is required for a number of partial reactions of the photosynthetic electron transfer chain. These reactions include the transfer of electrons from reduced 2,3′,6-trichlorophenolindophenol,N,N,N′,N′- tetramethyl-p-phenylenediamine and 2,3,5,6-tetramethyl-p-phenylenediamine to low potential oxidants. Reduced cytochrome c photooxidation does not appear to be dependent on plastocyanin. Cytochrome f, isolated from this alga, will partially replace plastocyanin in many of these reations. Inhibition of photosynthetic reactions by copper chelators appears to occur at some site other than the site of plastocyanin function.  相似文献   

20.
Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号