首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human granulocyte colony-stimulating factor (hG-CSF) was efficiently secreted at high levels in fed-batch cultures of recombinant Saccharomyces cerevisiae. However, the secreted recombinant hG-CSF (rhG-CSF) was shown to exist as large multimers in the culture broth due to strong hydrophobic interaction. It was hardly monomerized even by urea at high concentration. This multimer has been reported to diminish specific receptor-binding activity of hG-CSF and causes undesirable problems in the downstream process. When the rhG-CSF was secreted to extracellular broth in the presence of a non-ionic surfactant (Tween 80) in the culture media, the multimerization of the secreted rhG-CSF was efficiently prevented in the fed-batch cultures. Also, the monomer fraction and secretion efficiency of rhG-CSF were significantly increased at the higher culture pH (6.5). Without using any denaturing agents, the secreted rhG-CSF monomer was easily purified with high recovery yield and purity via a simple purification process under acidic conditions, consisting of diafiltration, cation exchange, and gel filtration chromatography. A lyophilization process devoid of intermonomer aggregation was also designed using effective stabilizing agents. Received: 2 March 1999 / Received revision: 16 April 1999 / Accepted: 23 April 1999  相似文献   

2.
Chronopharmacologic effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on circulating white blood cell and differential counts as well as bone marrow granulocyte-macrophage colony-forming units (CFU-GM) counts were investigated in B6D2F1 mice. The animals were synchronized with an alternation of 12 h of light (L) and 12 h of darkness (D) (LD 12:12) for 3 weeks prior to study, then received a daily subcutaneous injection of rhG-CSF (400 µg/kg/day) for 4 consecutive days at 3, 9, 15 or 21 h ours a fter l ight o nset (HALO). Samples were obtained on the fifth day at the same circadian stage as that of rhG-CSF injection. rhG-CSF significantly increased the 24-h mean of leukocyte, neutrophil, lymphocyte and CFU-GM counts. Maximum increase in leukocyte and neutrophil counts was observed when rhG-CSF was administered in the middle of the dark span, while maximum stimulatory effect on circulating lymphocytes or on CFU-GM counts was obtained with rhG-CSF administration near the middle of the light span. The results indicate that choosing the dosing time of this cytokine may selectively orient its pharmacologic action. Appropriate chronomodulated delivery schemes of rhG-CSF may further reduce hematological toxicity following chemotherapy.  相似文献   

3.
Chronopharmacologic effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on circulating white blood cell and differential counts as well as bone marrow granulocyte-macrophage colony-forming units (CFU-GM) counts were investigated in B6D2F1 mice. The animals were synchronized with an alternation of 12 h of light (L) and 12 h of darkness (D) (LD 12:12) for 3 weeks prior to study, then received a daily subcutaneous injection of rhG-CSF (400 µg/kg/day) for 4 consecutive days at 3, 9, 15 or 21 h ours a fter l ight o nset (HALO). Samples were obtained on the fifth day at the same circadian stage as that of rhG-CSF injection. rhG-CSF significantly increased the 24-h mean of leukocyte, neutrophil, lymphocyte and CFU-GM counts. Maximum increase in leukocyte and neutrophil counts was observed when rhG-CSF was administered in the middle of the dark span, while maximum stimulatory effect on circulating lymphocytes or on CFU-GM counts was obtained with rhG-CSF administration near the middle of the light span. The results indicate that choosing the dosing time of this cytokine may selectively orient its pharmacologic action. Appropriate chronomodulated delivery schemes of rhG-CSF may further reduce hematological toxicity following chemotherapy.  相似文献   

4.
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wild-type form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.  相似文献   

5.
6.
Human neutrophil peptides (HNPs) 1, 2 and 3 are antimicrobial peptides localized in the azurophil granules of neutrophils. We investigated the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the biosynthesis of HNPs 1-3 using a sensitive radioimmunoassay and Northern blot analysis. Seven patients with lung cancer were first treated with various anticancer agents for 3 days (days 1-3) followed by treatment with rhG-CSF (2 microgram/kg weight/day) for 7 days (days 8-14). Chemotherapy caused neutropenia but the neutrophil count increased biphasically between days 8 and 14. Chemotherapy did not change the baseline plasma concentration of HNPs 1-3 (74.1+/-2.1 pmol/ml) but the concentration increased from day 12, 5 days after commencement of rhG-CSF therapy, to reach a peak value of 430.8+/-57.0 pmol/ml on day 15, 1 day after the last administration of rhG-CSF. Baseline HNPs 1-3 content per neutrophil was 0.59+/-0.02 fmol, decreased to 0.30+/-0.07 fmol on day 9, then increased to 0.78+/-0.07 fmol on day 15. Analyses of peripheral blood neutrophils by Northern blot and reverse-phase high-performance liquid chromatography showed that the amounts of HNPs 1-3 mRNA and precursors of HNPs 1-3 markedly increased in response to rhG-CSF. Our results indicate that recombinant hG-CSF does not only increase neutrophil count but stimulates HNPs 1-3 biosynthesis in neutrophils, thus enhancing the host defense system of compromised hosts with neutropenia.  相似文献   

7.
An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.  相似文献   

8.
9.
Fed-batch fermentation for production of a single-chain Fv antibody fragment (scFv) expressed as a recombinant periplastic protein from Escherichia coli was investigated. A high cell density of 50 g dry cell weight per liter was routinely achieved in a 14-L vessel by controlled exponential feeding of glucose to impose a constant specific growth rate. Following biomass accumulation, induction of the tac promoter by addition of IPTG was accompaied by a linear feed of yeast extract. The concentration of yeast extract feed was found to be highly influential upon both concentration and location of active product. Although scFv fragments were specifically targeted to the periplasmic space, at yeast extract feed rates of 0.72 g/h the final location was largely extracellular (68% to 79%). Total concentrations (extracellular + periplasmic) were of the order of 5 to 8 mg/L. A ten-fold increase in yeast extract supply increased total scFv concentration to almost 200 mg/L and 78% of this yield was retained in the periplasm. Control of such leakage of the recombinant product is fundamental to process design of downstream operations for product recovery. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 611-622, 1997.  相似文献   

10.
Secretory production of human granulocyte colony-stimulating factor fusion protein (hG-CSF) by fed-batch culture of Escherichia coli was investigated in both 2.5-L and 30-L fermentors. To develop a fed-batch culture condition that allows efficient production of hG-CSF, different feeding strategies including pH-stat, exponential and constant feeding were examined. Among these, the constant feeding strategy (0.228 g glucose2min-1) and the exponential feeding that supports a low specific growth rate (µ=0.116 h-1) resulted in the best hG-CSF production. Under these conditions, 4.4 g2L-1 of hG-CSF was produced. The effect of induction time on the protein production was also investigated. For the fed-batch cultures carried out with the pH-stat and exponential feeding strategies, induction at higher cell density (late-exponential phase) resulted in more hG-CSF production compared with induction at lower cell density (early to mid-exponential phase). The constant feeding strategy that supported best hG-CSF production was applied to the scale-up production of hG-CSF in 30 L of fermentor. The maximum dry cell weight and hG-CSF concentration of 51.7 and 4.2 g2L-1, respectively, was obtained.  相似文献   

11.
Fed batch cultures were performed to investigate the effect of yeast extract concentration on the kinetics of growth and acetic acid production of recombinant Escherichia coli BL21 in a synthetic medium. Three runs were performed with 40g/l total glucose concentration. The yeast extract/glucose ratio (YE/G; w/w), was 0.1, 0.05 and 0.025 in the feed. These decreasing YE/G values did not affect growth kinetics, but reduced the final cell concentration by about 10%, and also reduced the cell yield. Experiments with 60g/l total glucose concentration, one with a YE/G of 0.025 in the feed and the other without yeast extract, showed final acetic acid concentrations of 5.1 and 0.5g/l respectively, without any difference in cellular concentration. Although there was no significant influence on growth kinetics and final cellular concentration, the cell fermentative capacity was enhanced by yeast extract. The feed medium without yeast extract was the best condition for control purposes in high cell density cultures and for recombinant gene expression.  相似文献   

12.
Recombinant hG-CSF was expressed in Pichia pastoris under the control of the AOX1 promoter. In this study, the glycerol feeding rate was adjusted to achieve the maximum attainable specific growth rate before induction. Using a two-stage glycerol feeding method, the specific growth rate was changed from a maximum value of 0.21 h−1 (at the beginning of feeding) to 0.15 h−1 prior to induction. With this approach, the final dry cell wt and rhG-CSF yield achieved was close to 120 g l−1 and 320 mg l−1, respectively. Our study found that the two-stage feeding method allowed the overall productivity of rhG-CSF to increase 2.9 times that of the conventional fed-batch method.  相似文献   

13.
Detection of granulocyte colony-stimulating factor (G-CSF), one of the substances responsible for proliferation and differentiation of granulocytes, has been performed up to the present by use of the granulocyte colony-formation assay, because of the lack of a specific anti-G-CSF antibody. This has prevented the advancement of biological investigations of cell dynamics linked to G-CSF, e.g., cell localization of G-CSF and its pathophysiological changes. In the present work, two monoclonal antibodies (MAb), 1E7 and 4A6, against recombinant human G-CSF (rhG-CSF) were developed by cell hybridization between NS-1 myeloma cells and splenocytes from a mouse immunized with rhG-CSF. 1E7 and 4A6 were shown to be reactive with hG-CSF but not with other CSF (hGM-CSF, hIL-3, and mouse GM-CSF) by Western blot analysis. An immunoperoxidase staining method using these MAb was then established. This method was applicable to frozen sections, paraffin-embedded sections, and cells fixed with 4% paraformaldehyde. Positive staining for G-CSF was observed in tumor cells secreting G-CSF and also in Chinese hamster ovary (CHO) cells transfected with hG-CSF cDNA. However, no staining was seen in tumor cells secreting no G-CSF, untransfected CHO cells, lung fibroblasts, or bone marrow stromal cells after short periods of culture. These results confirmed the immunospecificity of MAb 1E7 and 4A6 and the validity of their application to immunohistochemistry using paraffin-embedded sections.  相似文献   

14.
Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.  相似文献   

15.
Human granulocyte-colony stimulating factor (hG-CSF), a human cytokine, was expressed in transgenic rice cell suspension culture. The hG-CSF gene was cloned into the rice expression vector containing the promoter, signal peptide, and terminator derived from a rice alpha-amylase gene Amy3D. Using particle bombardment-mediated transformation, hG-CSF gene was introduced into the calli of rice (Oryza sativa) cultivar Dong-jin. Expression of the hG-CSF gene was confirmed by ELISA and Northern blot analysis. The amount of recombinant hG-CSF accumulated in culture medium from transgenic rice cell suspension culture on the sugar starvation was determined by time series ELISA. Biological activity of the plant derived hG-CSF was confirmed by measuring the proliferation of the AML-193 cells, and was similar to that of the commercial Escherichia coli-derived hG-CSF. In this paper, we discuss the attractive attributes of using rice cell suspension system for the expression of therapeutic recombinant hG-CSF.  相似文献   

16.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

17.
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达   总被引:1,自引:0,他引:1  
贾向东  陈喜文  陈德富  陈洁 《遗传》2006,28(5):551-556
谷胱甘肽S-转移酶Zeta类基因在酿酒酵母中的表达 贾向东1,陈喜文1,陈德富1,陈洁2 (1.南开大学生命科学学院,生物活性材料教育部重点实验室,天津300071;2.湖南怀化市铁路第一中学,怀化418000) 摘要:谷胱甘肽S-转移酶Zeta类(GSTZ)是一种重要的多功能酶,与细胞生化代谢、环境净化等密切相关。将拟南芥、甘蓝型油菜品系陕2B与垦C1的GSTZ基因克隆到大肠杆菌—酿酒酵母穿梭表达载体pYES2的多克隆位点,筛选到重组子后,提取重组质粒并将其转入酿酒酵母营养缺陷型菌株INCSc1细胞中,经SC-U培养基选择得到重组酵母Y2At、Y2BnB和Y2BnC。重组酵母在含棉子糖和半乳糖的诱导培养基中,表达出了具有二氯乙酸脱氯活力的谷胱甘肽S-转移酶Zeta类,且主要以可溶状态存在于酵母细胞中。不同碳源比较发现,使用半乳糖为唯一碳源时,与棉子糖和半乳糖共同使用相比,酵母生长虽受到轻微影响,但表达的GSTZ比活力几乎不受任何影响。0~96h诱导时间的优化实验表明,36h诱导下呈现最高比活力。同时也对不同GSTZ的Km值进行了比较。  相似文献   

18.
人纤溶酶原Kringle 1—5结构域的表达及活性鉴定   总被引:3,自引:0,他引:3  
利用RT PCR的方法从人肝癌细胞株HepG2细胞内获得了编码人纤溶酶原 (hPlasminogen)的Kringle 1到 5(简称K1- 5 )的cDNA ,将其克隆到表达载体pHIL S1中。将重组载体pHIL K1- 5转化毕赤酵母GS115 ,得到的重组菌株用甲醇进行诱导表达 ,并利用赖氨酸亲和柱纯化重组蛋白质。重组蛋白质K1- 5能特异性地按剂量依赖的方式抑制碱性成纤维细胞生长因子 (bFGF)刺激的牛主动脉内皮细胞 (BAEC)的增殖 ,浓度为 14mg L时达到最大抑制效果的 5 0 % ;K1- 5能抑制bFGF引起的BAEC的迁移 ,5 0mg L的K1- 5对BAEC迁移的抑制率为 4 7% ;K1- 5还能影响BAEC细胞的周期 ,14mg L的K1- 5使细胞在G0 ~G1 期积聚。  相似文献   

19.
A gratuitous induction system in the yeast Kluyveromyces lactis was evaluated for the expression of intracellular and extracellular products during fed-batch culture. The Escherichia coli lacZ gene (beta-galactosidase; intracellular) and MFalpha1 leader-BPTI cassette (bovine pancreatic trypsin inhibitor; extracellular) were placed under the control of the inducible K. lactis LAC4 promotor, inserted into partial-pKD1 plasmids, and transformed into a ga1-209 K. lactis strain. To obtain a high level of production, culture conditions for growth and expression were initially evaluated in tube cultures. A selective medium containing 5 g/L glucose (as carbon source) and 0.5 g/L galactose (as inducer) demonstrated the maximum activity of both beta-galactosidase and secreted BPTI. This level of expression had no significant effect on the growth of the recombinant cells; growth rate dropped by approximately 11%, whereas final biomass concentrations remained the same. In shake-flask culture, biomass concentration, beta-galactosidase activity, and BPTI secreted activity were 4 g/L, 7664 U/g dry cell, and 0.32 mg/L, respectively. Fed-batch culture (with a high glucose concentration and a low galactose [inducer] concentration feed) resulted in a 6.5-fold increase in biomass, a 23-fold increase in beta-galactosidase activity, and a 3-fold increase in BPTI secreted activity. The results demonstrate the success of gratuitous induction during high-cell-density fed-batch culture of K. lactis. A very low concentration of galactose feed was sufficient for a high production level.  相似文献   

20.
Human granulocyte colony-stimulating factor (hG-CSF) is a glycoprotein, consisting of 174 amino acids, which plays an important role in hematopoietic cell proliferation, differentiation of hemopoietic precursor cells, and activation of mature neutrophilic granulocytes. In this study, secretory production of hG-CSF in the periplasmic space of Escherichia coli using the Bacillus sp. endoxylanase signal peptide was examined. For the efficient expression of hG-CSF gene, the first five codons at the N-terminal were altered based on the E. coli high-frequency codon database. The hG-CSF gene fused to the endoxylanase signal sequence was expressed using an inducible trc promoter. However, recombinant E. coli cells were completely lysed after induction with 1 mM isopropyl-beta-D-thiogalactopyranoside. Insertion of a small oligopeptide (13 amino acids) containing the histidine hexamer and factor Xa cleavage site between the signal peptide and the mature hG-CSF protein allowed successful secretion of hG-CSF into the periplasm without cell lysis. Among the several E. coli strains examined, E. coli BL21(DE3) and E. coli MC4100 allowed production of hG-CSF to the highest levels (20-22% of total proteins) with the secretion efficiencies greater than 98%. The circular dichroism spectra showed that the conformation of purified hG-CSF is almost identical to native hG-CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号