首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces.  相似文献   

2.
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.  相似文献   

3.
Currently there is increasing interest in nanostructures and their design. Nanostructure design involves the ability to predictably manipulate the properties of the self-assembly of autonomous units. Autonomous units have preferred conformational states. The units can be synthetic material science-based or derived from functional biological macromolecules. Autonomous biological building blocks with available structures provide an extremely rich and useful resource for design. For proteins, the structural databases contain large libraries of protein molecules and their building blocks with a range of shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these can expand the available chemical space and enhance the desired properties. Here we focus on the principles of nanostructure design with protein building blocks.  相似文献   

4.
The synthesis of N-aryloxazolidinone 1, a conformationally constrained analog of linezolid embodying a tricyclic pyrrolo[1,2-a][4,1]benzoxazepine moiety as the N-aryl substituent, is reported. The synthetic route involves the successive construction of the pyrrole, oxazepine, and oxazolidinone rings, with incorporation of the isoxazolylamino moiety in the last synthetic steps.  相似文献   

5.
Here our goal is to carry out nanotube design using naturally occurring protein building blocks. Inspection of the protein structural database reveals the richness of the conformations of proteins, their parts, and their chemistry. Given target functional protein nanotube geometry, our strategy involves scanning a library of candidate building blocks, combinatorially assembling them into the shape and testing its stability. Since self-assembly takes place on time scales not affordable for computations, here we propose a strategy for the very first step in protein nanotube design: we map the candidate building blocks onto a planar sheet and wrap the sheet around a cylinder with the target dimensions. We provide examples of three nanotubes, two peptide and one protein, in atomistic model detail for which there are experimental data. The nanotube models can be used to verify a nanostructure observed by low-resolution experiments, and to study the mechanism of tube formation.  相似文献   

6.
Here we review different aspects of the protein folding literature. We present a broad range of observations, showing them to be consistent with a general hierarchical protein folding model. In such a model, local relatively stable, conformationally fluctuating building blocks bind through population selection, to yield the native state. The model includes several components: (1) the fluctuating building blocks that constitute local minima along the polypeptide chain, which even if unstable still possess higher population times than all alternate conformations; (2) the landscape around the bottom of the funnels; (3) the consideration that protein folding involves intramolecular recognition; (4) similar landscapes are observed for folding and for binding, and that (5) the landscape is dynamic, changing with the conditions. The model considers protein folding to be guided by native interactions. The reviewed literature includes the effects of changing the conditions, intermediates and kinetic traps, mutations, similar topologies, fragment complementation experiments, fragments and pathways, focusing on one specific well-studied example, that of the dihydrofolate reductase, chaperones, and chaperonines, in vivo vs. in vitro folding, still using the dihydrofolate example, amyloid formation, and molecular "disorder". These are consistent with the view that binding and folding are similar events, with the differences stemming from different stabilities and hence population times.  相似文献   

7.
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained γ-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (kinact/Ki) of 634,000 s−1M−1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing -methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease.  相似文献   

8.
The 27-mer peptide CP1B-[1-27] derived from exon 1B of calpastatin stands out among the known inhibitors for mu- and m-calpain due to its high potency and selectivity. By systematical truncation, a 20-mer peptide, CP1B-[4-23], was identified as the core sequence required to maintain the affinity/selectivity profile of CP1B-[1-27]. Starting with this peptide, the turn-like region Glu(10)(i)-Leu(11)(i+1)-Gly(12)(i+2)-Lys(13)(i+3) was investigated. Sequence alignment of subdomains 1B, 2B, 3B and 4B from different mammalians revealed that the amino acid residues in position i+1 and i+2 are almost invariably flanked by oppositely charged residues, pointing towards a turn-like conformation stabilized by salt bridge/H-bond interaction. Accordingly, using different combinations of acidic and basic residues in position i and i+3, a series of conformationally constrained variants of CP1B-[4-23] were synthesized by macrolactamization utilizing the side chain functionalities of these residues. With the combination of Glu(i)/Dab(i+3), the maximum of conformational rigidity without substantial loss in affinity/selectivity was reached. These results clearly demonstrate that the linear peptide chain corresponding to subdomain 1B reverses its direction in the region Glu(10)-Lys(13) upon binding to mu-calpain, and thereby adopts a loop-like rather than a tight turn conformation at this site.  相似文献   

9.
Starting from both enantiomers of a readily available building block, a straightforward enantioselective approach to constrained 3'-methyl-2',3'-alpha-oxirane-fused and 3'-methyl-3',4'-alpha-oxirane-fused carbanucleosides bearing different purine base analogues is described. The title compounds were evaluated as potential antiviral agents against important viruses. None of the new compounds had significant antiviral activity at a concentration of 100 microg/mL, which was the highest concentration tested.  相似文献   

10.
Like natural viruses, manmade protein cages for drug delivery are to be ideally formed by repetitive subunits with self-assembling properties, mimicking viral functions and molecular organization. Naturally formed nanostructures (such as viruses, flagella or simpler protein oligomers) can be engineered to acquire specific traits of interest in biomedicine, for instance through the addition of cell targeting agents for desired biodistribution and specific delivery of associated drugs. However, fully artificial constructs would be highly desirable regarding finest tuning and adaptation to precise therapeutic purposes. Although engineering of protein assembling is still in its infancy, arising principles and promising strategies of protein manipulation point out the rational construction of nanoscale protein cages as a feasible concept, reachable through conventional recombinant DNA technologies and microbial protein production.  相似文献   

11.
There are several approaches to creating synthetic-biological systems. Here, we describe a molecular-design approach. First, we lay out a possible synthetic-biology space, which we define with a plot of complexity of components versus divergence from nature. In this scheme, there are basic units, which range from natural amino acids to totally synthetic small molecules. These are linked together to form programmable tectons, for example, amphipathic alpha-helices. In turn, tectons can interact to give self-assembled units, which can combine and organize further to produce functional assemblies and systems. To illustrate one path through this vast landscape, we focus on protein engineering and design. We describe how, for certain protein-folding motifs, polypeptide chains can be instructed to fold. These folds can be combined to give structured complexes, and function can be incorporated through computational design. Finally, we describe how protein-based systems may be encapsulated to control and investigate their functions.  相似文献   

12.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.  相似文献   

13.
Identifying independently folding cores or substructures is important for understanding and assaying the structure, function and assembly of large proteins. Here, we suggest mechanical stability as a criterion to identify building blocks of the 366 amino acid maltose-binding protein (MBP). We find that MBP, when pulled at its termini, unfolds via three (meta-) stable unfolding intermediates. Consequently, the MBP structure consists of four structural blocks (unfoldons) that detach sequentially from the folded structure upon force application. We used cysteine cross-link mutations to characterize the four unfoldons structurally. We showed that many MBP constructs composed of those building blocks indeed form stably folded structures in solution. Mechanical unfoldons may provide a new tool for a systematic search for stable substructures of large proteins.  相似文献   

14.
H Liu  Z Duan  Q Luo  Y Shi 《Proteins》1999,36(4):462-470
A structure-based ligand design method is proposed and tested. The method is based on stochastic dynamics simulation of multiple copies of molecular building blocks in the presence of a receptor molecule. The molecular building blocks are assembled into candidate compounds "on the fly" at given intervals during the simulation. In the algorithm, a special effort is made to explore different possible combinations of building blocks and to select an optimum combination. By repeating the cycle of deconstruction and reconstruction in a single simulation, a set of candidate compounds that can be built from the building blocks evolves and is dynamically optimized. The method was tested by breaking two known flexible human immunodeficiency virus type 1 protease inhibitors into building blocks and reassembling them in the active site of the enzyme. For the inhibitor L700417, a set of conformations was generated by the calculation. Among these, the original compound was recovered with the lowest energy at the experimentally observed binding site and in the correct conformation. For pepstatin, the experimentally observed binding mode of the backbone of the inhibitor was reproduced by a calculation in which the building blocks corresponding to the side-chain groups were omitted. Proteins 1999;36:462-470.  相似文献   

15.
Nanotechnology realizes the advantages of naturally occurring biological macromolecules and their building-block nature for design. Frequently, assembly starts with the choice of a "good" molecule that is synthetically optimized towards the desired shape. By contrast, we propose starting with a pre-specified nanostructure shape, selecting candidate protein building blocks from a library and mapping them onto the shape and, finally, testing the stability of the construct. Such a shape-based, part-assembly strategy is conceptually similar to protein design through the combinatorial assembly of building blocks. If the conformational preferences of the building blocks are retained and their interactions are favorable, the nanostructure will be stable. The richness of the conformations, shapes and chemistries of the protein building blocks suggests a broad range of potential applications; at the same time, it also highlights their complexity. In this Opinion article, we focus on the first step: validating such a strategy against experimental data.  相似文献   

16.
Borrowing concepts from the schema theory of genetic algorithms, we have developed a computational algorithm to identify the fragments of proteins, or schemas, that can be recombined without disturbing the integrity of the three-dimensional structure. When recombination leaves these schemas undisturbed, the hybrid proteins are more likely to be folded and functional. Crossovers found by screening libraries of several randomly shuffled proteins for functional hybrids strongly correlate with those predicted by this approach. Experimental results from the construction of hybrids of two beta-lactamases that share 40% amino acid identity demonstrate a threshold in the amount of schema disruption that the hybrid protein can tolerate. To the extent that introns function to promote recombination within proteins, natural selection would serve to bias their locations to schema boundaries.  相似文献   

17.
Grubbs' olefin metathesis reaction was utilized to prepare a macrocyclic variant of a linear Grb2 SH2 domain antagonist in an attempt to induce a beta-bend conformation known to be required for high affinity binding. In extracellular Grb2 SH2 domain binding assays, the macrocyclic analogue exhibited an approximate 100-fold enhancement in binding potency relative to its linear counterpart. The macrocycle was not as effective in whole cell binding assays as would be expected based on its extracellular binding potency.  相似文献   

18.
Calcitonin is known for its hypocalcaemic effect and the inhibition of bone resorption, and is used therapeutically for the treatment of osteoporosis and Paget's disease. Our studies on the conformational features of human calcitonin (hCt) bioactivity have led to the conformationally constrained hCt analogue cyclo17,21-[Asp17, Lys21]hCt (1), which had a 5-10 times higher in vivo hypocalcaemic potency than hCt [Kapurniotu, A. & Taylor, J.W. (1995) J. Med. Chem. 38, 836-847]. We hypothesized that a stabilized, possibly type I beta turn/beta sheet conformation between residues 17 and 21 could play a crucial role in hCt bioactivity. Here, we designed, synthesized and studied the conformation and bioactivity of 19-member to 17-member ring-size analogues of 1 with the structure cyclo17,21-[Asp17,XX21]hCt with XX = Orn (2), Dab (3) and Dap (4), of the control peptide [Asp17,Orn21]hCt (5), and of the 19-member cyclo17,21-[Glu17,Dab21]hCt (6). Analyses of the far-UV CD spectra indicated increased type I beta turn and antiparallel beta sheet content in the bicyclic analogues compared with hCt. In the in vivo hypocalcaemic assay, cyclo17,21-[Asp17,Orn21]hCt (2) was found to have a 400-fold higher potency than hCt and was fourfold more potent than salmon calcitonin (sCt), which has been the most potent known Ct. Analogue 3 had a 30-fold higher potency than hCt, whereas the highly constrained analogue 4 was as potent as hCt. Bioactivity was not enhanced for the nonbridged compound [Asp17, Orn21]hCt (5), whereas cyclo17,21-[Glu17,Dab21]hCt (6) showed the same bioactivity as 1. This study identifies 2 as exhibiting the highest in vivo potency among currently known Cts, while it differs in only one amino acid residue from hCt, strongly suggesting that the introduced constraint may have served in 'freezing' hCt in a bioactive conformation. Our findings provide evidence for the first time that a beta turn/beta sheet conformation in region 17-21 of hCt and the topological features of the side chain of Asn17 are strongly associated with in vivo bioactivity, and offer a novel lead structure for a hCt-based drug for the treatment of osteoporosis and other bone-disorder-related diseases.  相似文献   

19.
Synthetic biology is a recently emerging field that applies engineering formalisms to design and construct new biological parts, devices, and systems for novel functions or life forms that do not exist in nature. Synthetic biology relies on and shares tools from genetic engineering, bioengineering, systems biology and many other engineering disciplines. It is also different from these subjects, in both insights and approach. Applications of synthetic biology have great potential for novel contributions to established fields and for offering opportunities to answer fundamentally new biological questions. This article does not aim at a thorough survey of the literature and detailing progress in all different directions. Instead, it is intended to communicate a way of thinking for synthetic biology in which basic functional elements are defined and assembled into living systems or biomaterials with new properties and behaviors. Four major application areas with a common theme are discussed and a procedure (or "protocol") for a standard synthetic biology work is suggested.  相似文献   

20.
The title l-glutathione derivatives, containing acid- and base-labile esters, respectively, were obtained in good overall yields. N-(t)Boc l-glutathione dimethyl ester was prepared via Fischer esterification of l-glutathione disulfide (GSSG) using HCl in dry methanol, protection of the amine with (t)Boc(2)O, and tributylphosphine cleavage of the disulfide in wet isopropanol. Alternatively, Fischer esterification and (t)Boc-protection of l-glutathione (GSH) also furnished N-(t)Boc glutathione dimethyl ester accompanied by a small amount of S-(t)Boc that was removed chromatographically. The di-tert-butyl ester was obtained by S-palmitoylation of GSH in TFA as solvent, N-(t)Boc-protection, esterification using (t)BuOH mediated by diisopropylcarbodiimide/copper(I) chloride, and saponification of the thioester. These l-glutathione derivatives are versatile synthetic building blocks for the preparation of S-glutathione adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号