首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
猕猴MHC-DPB1基因外显子2多态性研究   总被引:3,自引:0,他引:3  
猕猴(Macaca mulatta)是最理想的医学实验灵长类动物, 且为国家二级保护动物。为了解中国猕猴主要组织相容复合体(Major histocompatibility complex, MHC)基因的遗传多态性背景, 为它们在生物医学研究中的应用及其遗传资源的保护提供一定的科学依据, 文章采用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis, DGGE)和克隆测序技术分析了106个四川野生猕猴MHC-DPB1基因的exon 2, 共检测到21个Mamu-DPB1等位基因, 其中有15个为本研究中首次发现的新等位基因; 从整个大的猕猴群体(106个个体)来看, 等位基因频率最高的是Mamu-DPB1*30(0.1120); 单独从不同地理群体来看, 最高等位基因频率分别为: 小金-DPB1*30 (0.1120), 黑水-DPB1*04 (0.1702), 巴中-DPB1*32 (0.1613), 汉源-DPB1*30(0.1120), 九龙-DPB1*04(0.1139); 氨基酸序列比对发现, 猕猴Mamu-DPB1等位基因编码的氨基酸序列中, 有12个氨基酸残基变异位点表现出物种特异性, 其中有9个位于新发现的15个Mamu-DPB1等位基因氨基酸序列中; 不同物种来源的DPB1等位基因系统发生树表明, 猕猴与其近缘物种食蟹猴(Macaca fascicularis)的DPB1等位基因间存在着跨种多态(Trans-species polymorphism)现象。研究还表明, MHC-DPB1等位基因在中国猕猴群体和先前为主要研究对象的印度猕猴群体间具有较大的差异。  相似文献   

2.
Rhesus macaques have long been used as animal models for various human diseases; the susceptibility and/or resistance to some of these diseases are related to the major histocompatibility complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, Mamu-DPA1, Mamu-DQA1, and Mamu-DRA alleles were investigated in 30 Chinese rhesus macaques by gene cloning and sequencing. A total of 14 Mamu-DPA1, 17 Mamu-DQA1, and 9 Mamu-DRA alleles were identified in this study. Of these alleles, 22 novel sequences have not been documented in earlier studies, including nine Mamu-DPA1, ten Mamu-DQA1, and three Mamu-DRA alleles. Interestingly, like Mafa-DQA1 and Mafa-DPA1, more than two Mamu-DQA1 and Mamu-DPA1 alleles were detected in one animal in this study, which suggested that they might represent gene duplication. If our findings can be validated by other studies, it will further increase the number of known Mamu-DPA1 and Mamu-DQA1 polymorphisms. Our data also indicated significant differences in MHC class II allele distribution among the Chinese rhesus macaques, Vietnamese cynomolgus macaques, and the previously reported rhesus macaques, which were mostly of Indian origin. This information will not only promote the understanding of Chinese rhesus macaque MHC diversity and polymorphism but will also facilitate the use of Chinese rhesus macaques in studies of human disease.  相似文献   

3.
The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques?? major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC?Cpeptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses.  相似文献   

4.
Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques.  相似文献   

5.
Since rhesus monkeys of Chinese origin have gained greater utilization in recent years, it is urgent to investigate the major histocompatibility complex (MHC) immunogenetics of Chinese rhesus macaques. In this study, we identified 81 Mamu-B sequences using complementary DNA cloning and sequencing on a cohort of 58 rhesus monkeys derived from three local populations of China. Twenty of these Mamu-B alleles are novel and four of them represent new lineages. Although more alleles are shared among different populations than Mamu-A locus, the Mamu-B allelic repertoires found in these three populations of Chinese macaques are largely independent, which underscores the MHC polymorphism among different populations of Chinese rhesus macaques. Our results are an important addition to the limited MHC immunogenetic information available for rhesus macaques of Chinese origin.  相似文献   

6.
Pig-tailed macaques (Macaca nemestrina) serve as important models for human infectious disease research. Major histocompatibility complex (MHC) class II molecules are important to this research since they present peptides to CD4+ T cells. Despite the importance of characterizing the MHC-II alleles expressed in model species like pig-tailed macaques, to date, less than 150 MHC-II alleles have been named for the six most common classical class II loci (DRA, DRB, DQA, DQB, DPA, and DPB) in this population. Additionally, only a small percentage of these alleles are full-length, making it impossible to use the known sequence for reagent development. To address this, we developed a fast, high-throughput method to discover full-length MHC-II alleles and used it to characterize alleles in 32 pig-tailed macaques. By this method, we identified 128 total alleles across all six loci. We also performed an exon 2-based genotyping assay to validate the full-length sequencing results; this genotyping assay could be optimized for use in determining MHC-II allele frequencies in large cohorts of pig-tailed macaques.  相似文献   

7.
Rhesus and cynomolgus macaques are frequently used in biomedical research, and the availability of their reference genomes now provides for their use in genome-wide association studies. However, little is known about linkage disequilibrium (LD) in their genomes, which can affect the design and success of such studies. Here we studied LD by using 1781 conserved single-nucleotide polymorphisms (SNPs) in 183 rhesus macaques (Macaca mulatta), including 97 purebred Chinese and 86 purebred Indian animals, and 96 cynomolgus macaques (M. fascicularis fascicularis). Correlation between loci pairs decayed to 0.02 at 1146.83, 2197.92, and 3955.83 kb for Chinese rhesus, Indian rhesus, and cynomolgus macaques, respectively. Differences between the observed heterozygosity and minor allele frequency (MAF) of pairs of these 3 taxa were highly statistically significant. These 3 nonhuman primate taxa have significantly different genetic diversities (heterozygosity and MAF) and rates of LD decay. Our study confirms a much lower rate of LD decay in Indian than in Chinese rhesus macaques relative to that previously reported. In contrast, the especially low rate of LD decay in cynomolgus macaques suggests the particular usefulness of this species in genome-wide association studies. Although conserved markers, such as those used here, are required for valid LD comparisons among taxa, LD can be assessed with less bias by using species-specific markers, because conserved SNPs may be ancestral and therefore not informative for LD.Abbreviations: GWAS, genome-wide association study; LD, linkage disequilibrium; MAF, minor allele frequencyContributing to the widespread use of nonhuman primates in biomedical research, captive-breeding programs such as those of the National Primate Research Center system in the United States were established initially by using animals imported from Asia. The 2 most commonly used primates are rhesus macaques (Macaca mulatta) and long-tailed or cynomolgus macaques (M. fascicularis fascicularis).After humans, rhesus macaques are the most widely distributed primate species.37,38 This species is found throughout mainland Asia, ranging from Afghanistan to India and eastward through Thailand and southern China to the Yellow Sea.31,34 In addition to their significant morphological differences,9 rhesus macaques of Indian and Chinese origins have been demonstrated to exhibit significant phenotypic differences that are directly relevant to their use as biomedical models in experimental studies.2,23,42 Cynomolgus macaques are found south of the subtropical and temperate geographic distributions of rhesus macaques, in the south and southeast Indo-Malayan regions.8,10The 2 species share a common ancestor that lived 1 to 2 million years ago.3,13,25 This ancestral population of rhesus macaques diverged from a fascicularis-like ancestor shared in common with both rhesus and cynomolgus macaques after cynomolgus macaques expanded from their homeland in Indonesia.36 For this reason, genetic markers present in Indian rhesus macaques are either highly derived or are conserved as ancestral markers shared with Chinese rhesus macaques. The interspecific boundaries of rhesus and cynomolgus macaques are delineated by a narrow zone of parapatry in northern Indochina,7,8,10 within which male-biased gene flow37,39 and relatively high, but highly variable, levels of introgression of genes32 have occurred from rhesus to cynomolgus macaque groups.37,39 Because cynomolgus macaques originated in Indonesia36 and because rhesus macaques probably diverged from cynomolgus macaques in southwestern China,11 genetic markers shared between Indonesian cynomolgus macaques and Chinese rhesus macaques comprise a unique set of markers that are conserved in both macaque species.The wide assortment of morphometric differences8,9 and the broad geographic distribution of these 2 macaque species foster an expectation of high genetic diversity within and between them that could be exploited for mapping genes responsible for phenotypic differences between taxa. A better understanding of linkage disequilibrium (LD) in these nonhuman primate species can lead to a more informed selection of study subjects for, and more efficient conduct of, genome-wide association studies (GWAS) of particular diseases that macaques share in common with humans. LD is the nonrandom association of alleles at 2 or more adjacent loci that descend from single, ancestral chromosomes.29 LD plays a critical role in gene mapping, both as a tool for fine mapping of complex disease genes and in GWAS-based approaches. GWAS facilitate the identification of genes associated with complex and common traits or diseases by examining LD estimates among large numbers of common genetic variants, typically single-nucleotide polymorphisms (SNPs), between pairs of different groups of subjects to determine whether any variant is associated with a trait or disease of interest. LD data make tightly linked variants strongly correlated to produce successful association studies. For instance, LD reduces the number of markers and sample size of study subjects required to map genes influencing phenotypes to the genome because markers in LD are linked and inherited together.13 In addition, differences in LD can be used to identify orthologs for detecting the signatures of selective sweeps,21 as defined by dN/dS ratios obtained through the McDonald–Kreitman neutrality test.24 Furthermore, LD assessments can provide a more complete understanding of genome structure by defining the boundaries of haplotype blocks, within which recombination is rare or absent and which are separated by recombination ‘hotspots,’ in genomes.43Evidence from a study based on 1476 SNPs identified in ENCODE regions of the Indian rhesus macaque genome13 indicated that the rate of LD decay is higher in Chinese than in Indian rhesus macaques due to an hypothesized genetic bottleneck experienced by Indian rhesus macaques after diverging from the eastern subspecies, and, therefore, that Indian rhesus macaques, having higher LD, may be more useful for GWAS than Chinese rhesus macaques. In that study,13 only 33% of the SNPs were shared in common between the 2 subspecies, with Chinese rhesus macaques contributing to more than 60% of the remaining rhesus SNPs. Conversely, another study41 reported a slower rate of decay of LD in 25 Chinese than in 25 Indian rhesus macaques on the basis of 4040 SNPs, only 2% of which fell in coding regions, but 68% of those SNPs were shared between the 2 subspecies, with Indian rhesus macaques contributing almost 60% of the remaining SNPs. The marked disparity between the 2 studies in the proportions of shared SNPs used, the subspecies with the most genetic diversity, the sample size of Chinese rhesus macaques, the proportions of SNPs located in or near coding regions that are subject to functional constraints, and the greater disparity in LD decay between the 2 subspecies of rhesus macaques might reflect biases in either or both studies. For example, the use of markers whose frequencies are uncharacteristically low in one subspecies relative to the other can underestimate the rate of LD decay because lower frequency alleles, on average, are younger and have experienced less time for recombination.26 To avoid the influence of such ascertainment biases, comparisons of LD between 2 taxa should involve only SNPs conserved in both taxa. Moreover, because 2 points do not provide a phylogenetic or cladistic analysis to assign specific SNPs to origin on one phylogenetic line or another, comparing just the Indian and Chinese rhesus macaques without an additional primate taxon makes it is difficult to establish polarity and distinguish between derived and conserved SNPs. This limitation likely led to the contradictory conclusions of the 2 previously cited studies13,41 regarding the rate of LD decay in Chinese and Indian rhesus macaques.Because rhesus and cynomolgus macaques share a common fascicularis-like ancestor, a comparison of heterospecific SNPs among cynomolgus, Indian rhesus, and Chinese rhesus macaques would likely be fundamental to inferences regarding genome-wide LD estimates. The objective of the present study was to evaluate the conclusions of previous studies13,41 by using our panel of 1781 autosomal SNPs that are conserved in both rhesus and cynomolgus macaques to estimate the rates at which genome-wide LD decays in Indian and Chinese rhesus macaques and cynomolgus macaques, the species ancestral to rhesus macaques, and to evaluate the suitability of these populations for GWAS.  相似文献   

8.
Vaccines that elicit CD8+ T-cell responses are routinely tested for immunogenicity in nonhuman primates before advancement to clinical trials. Unfortunately, the magnitude and specificity of vaccine-elicited T-cell responses are variable in currently utilized nonhuman primate populations, owing to heterogeneity in major histocompatibility (MHC) class I genetics. We recently showed that Mauritian cynomolgus macaques (MCM) have unusually simple MHC genetics, with three common haplotypes encoding a shared pair of MHC class IA alleles, Mafa-A*25 and Mafa-A*29. Based on haplotype frequency, we hypothesized that CD8+ T-cell responses restricted by these MHC class I alleles would be detected in nearly all MCM. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined simian immunodeficiency virus-specific CD8+ T-cell responses. The epitopes recognized by each of these responses accumulated substitutions consistent with immunologic escape, suggesting these responses exert antiviral selective pressure. The demonstration that Mafa-A*25 and Mafa-A*29 restrict CD8+ T-cell responses that are shared among nearly all MCM indicates that these animals are an advantageous nonhuman primate model for comparing the immunogenicity of vaccines that elicit CD8+ T-cell responses.The immunogenicity and efficacy of vaccines intended for human use are commonly evaluated in rhesus and cynomolgus macaques. Indeed, researchers studied an estimated one million macaques in the search for a polio vaccine (5). More recently, these animals have become the dominant preclinical model for human immunodeficiency virus (HIV) vaccine evaluation. Rhesus and cynomolgus macaques are susceptible to infection with pathogenic strains of simian immunodeficiency virus (SIV), lentiviruses that share close genetic homology to HIV and cause AIDS-defining illnesses (11, 14). Vaccines designed to provide sterilizing immunity or control immunodeficiency virus replication can therefore be evaluated in macaques. In addition, the immune systems of humans and macaques are highly similar, providing hope that promising vaccines in macaques can be readily adapted for use in humans.CD8+ T cells are particularly attractive candidates for vaccine development. Several lines of evidence indicate that CD8+ T cells are important to the control of HIV/SIV viral replication. Expansion of HIV/SIV-specific CD8+ T cells during acute viremia is associated with a sharp decline in viral load (6, 21, 50), while the depletion of CD8+ cells in SIV-infected macaques results in increased viral loads (13, 27) and abrogates the protection elicited by live, attenuated vaccination (30, 38). Furthermore, major histocompatibility complex (MHC) genotyping studies have identified multiple MHC class I alleles enriched in human and macaque elite controllers (17, 19, 26, 31, 49).Recently, Merck and the HIV Vaccine Trials Network cancelled a phase IIb clinical trial evaluating an HIV vaccine designed to elicit CD8+ T-cell immunity. An interim analysis revealed the vaccine was ineffective and that participants with prior immunity to the vaccine vector actually had a higher incidence of HIV infection (7, 28, 39, 43). Dozens of additional vaccines that aim to elicit CD8+ T cells are in various stages of preclinical and early-stage clinical development, and testing these vaccines in macaques will provide the proof-of-concept necessary to predict their success.Unfortunately, it has been impossible to definitively associate the breadth, magnitude, or phenotype of SIV-specific CD8+ T-cell responses, elicited by competing vaccine modalities, to viral control. Indian rhesus macaques are the most commonly used model for HIV vaccine testing but have extremely diverse MHC class I genetics, giving rise to heterogeneous CD8+ T-cell responses. SIV derived CD8+ T-cell epitopes have been defined for eight Indian rhesus macaque MHC class I alleles (24). However, more than 400 classical MHC class I alleles have been identified in rhesus macaques, leaving an enormous gap in our understanding of the overall CD8+ T-cell repertoire following SIV infection (37). Identifying large cohorts of Indian rhesus macaques matched for one or more MHC class I alleles, and thus predicted to mount CD8+ T-cell responses against the same epitopes, is both difficult and expensive. An abundant nonhuman primate model with limited MHC diversity could standardize testing of each new vaccine entering preclinical development. Indeed, head-to-head testing of CD8+ T-cell vaccines is essential to maximize the efficiency of the global vaccine enterprise and prioritize rapid advancement of promising candidates.In contrast to Indian rhesus macaques, Mauritian cynomolgus macaques (MCM) are an insular population that expanded from a small number of founder animals (23) over the last 500 years. The unique natural history of these animals is manifest by exceptionally low genetic diversity. We have characterized the MHC genetics of this population and found only seven common haplotypes containing fewer than 30 MHC class I alleles (12, 48). The three most common MHC haplotypes each express Mafa-A*25 and Mafa-A*29. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined SIV-specific CD8+ T-cell responses that drive SIV variation. These results suggest that MCM will provide an exceptionally valuable resource for head-to-head evaluations of competing vaccine modalities.  相似文献   

9.
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the D(d) mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These "G2" alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the "G2" alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.  相似文献   

10.
A panel of 15 carefully selected microsatellites (short tandem repeats, STRs) has allowed us to study segregation and haplotype stability in various macaque species. The STRs span the major histocompatibility complex (MHC) region and map in more detail from the centromeric part of the Mhc-A to the DR region. Two large panels of Indian rhesus and Indonesian/Indochinese cynomolgus macaques have been subjected to pedigree analysis, allowing the definition of 161 and 36 different haplotypes and the physical mapping of 10 and 5 recombination sites, respectively. Although most recombination sites within the studied section of the Indian rhesus monkey MHC are situated between the Mhc-A and Mhc-B regions, the resulting recombination rate for this genomic segment is low and similar to that in humans. In contrast, in Indonesian/Indochinese macaques, two recombination sites, which appear to be absent in rhesus macaques, map between the class III and II regions. As a result, the mean recombination frequency of the core MHC, Mhc-A to class II, is higher in Indonesian/Indochinese cynomolgus than in Indian rhesus macaques, but as such is comparable to that in humans. The present communication demonstrates that the dynamics of recombination ‘hot/cold spots’ in the MHC, as well as their frequencies, may differ substantially between highly related macaque species.  相似文献   

11.
12.
Microsatellite typing of the rhesus macaque MHC region   总被引:16,自引:8,他引:8  
To improve the results gained by serotyping rhesus macaque major histocompatibility complex (MHC) antigens, molecular typing techniques have been established for class I and II genes. Like the rhesus macaque Mamu-DRB loci, the Mamu-A and -B are not only polymorphic but also polygenic. As a consequence, sequence-based typing of these genes is time-consuming. Therefore, eight MHC-linked microsatellites, or short tandem repeats (STRs), were evaluated for their use in haplotype characterization. Polymorphism analyses in rhesus macaques of Indian and Chinese origin showed high STR allelic diversity in both populations but different patterns of allele frequency distribution between the groups. Pedigree data for class I and II loci and the eight STRs allowed us to determine extended MHC haplotypes in rhesus macaque breeding groups. STR sequencing and comparisons with the complete rhesus macaque MHC genomic map allowed the exact positioning of the markers. Strong linkage disequilibria were observed between Mamu-DR and -DQ loci and adjacent STRs. Microsatellite typing provides an efficient, robust, and quick method of genotyping and deriving MHC haplotypes for rhesus macaques regardless of their geographical origin. The incorporation of MHC-linked STRs into routine genetic tests will contribute to efforts to improve the genetic characterization of the rhesus macaque for biomedical research and can provide comparative information about the evolution of the MHC region.  相似文献   

13.
Chinese rhesus macaques are of particular interest in simian immunodeficiency virus/human immunodeficiency virus (SIV/HIV) research as these animals have prolonged kinetics of disease progression to acquired immunodeficiency syndrome (AIDS), compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of major histocompatibility complex (MHC) molecules, including their MHC/peptide-binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29 %. The peptide-binding specificity of two of these alleles, Mamu-A2*01:02 and Mamu-B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term nonprogression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts and thereby warrants further studies to decipher the role of these alleles in the context of SIV infection.  相似文献   

14.
Identification of MHC class I sequences in Chinese-origin rhesus macaques   总被引:5,自引:5,他引:0  
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population.  相似文献   

15.
 Rhesus macaques represent important animal models for biomedical research. The ability to identify macaque major histocompatibility complex (Mhc) alleles is crucial for fully understanding these models of autoimmune and infectious disease. Here we describe a rapid and unambiguous way to distinguish DRB alleles in the rhesus macaque using the polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and direct sequencing. The highly variable second exon of Mamu-DRB alleles was amplified using generic DRB primers and alleles were separated by DGGE. DNA was then reamplified from plugs removed from the gel and alleles were determined using fluorescent-based sequencing. Validity of this typing procedure was confirmed by identification of all DRB alleles for three macaques previously characterized by cloning and sequencing techniques. Importantly, our analysis revealed DRB alleles not previously identified in the three reference animals. Using this technique, we identified 40 alleles in fifteen unrelated macaques. On the basis of phylogenetic tree analyses, 14 new DRB alleles were assigned to 10 different Mhc-DRB lineages. Interestingly, two of the new DRB6 lineages had previously been identified in prosimians and pigtailed macaques. Whereas traditional DRB typing methods provide limited information, our new technique provides a simple and relatively rapid way of identifying DRB alleles for tissue typing, determining individual identification and studies of disease association and susceptibility. This new technique should also contribute to ongoing studies of Mhc function and evolution in many different species of nonhuman primates. Received: 29 May 1996 / Revised: 8 August 1996  相似文献   

16.
High-frequency alleles and/or co-occurring human leukocyte antigen alleles across loci appear to be more important than individual alleles as markers of disease risk and have clinical value as biomarkers for targeted screening or the development of new disease therapies. To better elucidate the major histocompatibility complex (MHC) background and to facilitate the experimental use of cynomolgus macaques, Mafa-DPA1, Mafa-DQA1, Mafa-DRA, and Mafa-DOA alleles were characterized, and their combinations were investigated in 30 Vietnamese macaques by gene cloning and sequencing. A total of 26 Mafa-DPA1, 18 Mafa-DQA1, 9 Mafa-DRA, and 15 Mafa-DOA alleles, including 7 high-frequency alleles, were identified in this study, respectively. In addition, 15 Mafa-DQA1, 17 Mafa-DPA1, 15 Mafa-DOA, and 2 Mafa-DRA alleles represented novel sequences that had not been documented in earlier studies. Our results also showed that the Vietnamese macaques might be valuable because no less than 30 % of the test animals possessed Mafa-DRA*01:02:01 (90 %), -DQA1*26:01:03 (37 %), -DOA*01:02:07 (34 %), and -DQA1*01:03:03 (30 %). We previously reported that the combinations of MHC class II alleles, including the combination of DOA*01:02:07-DPA1*02:09 and DOA*01:02:07-DQA1*01:03:03, were detected in 17 and 14 % of the animals, respectively. Interestingly, more than two Mafa-DQA1 and Mafa-DPA1 alleles were detected in one animal in this study, which suggested that they might be caused by a chromosomal duplication. If our findings can be validated by other studies, it will further enrich the number of known Mafa-DPA1 and Mafa-DQA1 polymorphisms. Our results identified the co-occurring MHC alleles across loci in a cohort of Vietnamese cynomolgus macaques, which emphasized the value of this species as a model for biomedical research.  相似文献   

17.
18.

Background

Cynomolgus macaques (Macaca fascicularis) are a valuable resource for linkage studies of genetic disorders, but their microsatellite markers are not sufficient. In genetic studies, a prerequisite for mapping genes is development of a genome-wide set of microsatellite markers in target organisms. A whole genome sequence and its annotation also facilitate identification of markers for causative mutations. The aim of this study is to establish hundreds of microsatellite markers and to develop an integrative cynomolgus macaque genome database with a variety of datasets including marker and gene information that will be useful for further genetic analyses in this species.

Results

We investigated the level of polymorphisms in cynomolgus monkeys for 671 microsatellite markers that are covered by our established Bacterial Artificial Chromosome (BAC) clones. Four hundred and ninety-nine (74.4%) of the markers were found to be polymorphic using standard PCR analysis. The average number of alleles and average expected heterozygosity at these polymorphic loci in ten cynomolgus macaques were 8.20 and 0.75, respectively.

Conclusion

BAC clones and novel microsatellite markers were assigned to the rhesus genome sequence and linked with our cynomolgus macaque cDNA database (QFbase). Our novel microsatellite marker set and genomic database will be valuable integrative resources in analyzing genetic disorders in cynomolgus macaques.  相似文献   

19.
Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research fields and they are classified as Old World monkey, in which genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP2 molecules that are ligands for NKG2D. A total of 15 and 11 ULBP2.1 alleles and 11 and 10 ULBP2.2 alleles were identified in rhesus macaques and cynomolgus macaques, respectively. Nucleotide sequences of exons for extra cellular domain were highly polymorphic and more than 70 % were non-synonymous variations in both ULBP2.1 and ULBP2.2. In addition, phylogenetic analyses revealed that the ULBP2.2 was diverged from a branch of ULBP2.1 along with ULBP2s of higher primates. Moreover, when 3D structural models were constructed for the rhesus ULBP2 molecules, residues at presumed contact sites with NKG2D were polymorphic in ULBP2.1 and ULBP2.2 in the rhesus macaque and cynomolgus macaque, respectively. These observations suggest that amino acid replacements at the interaction sites with NKG2D might shape a specific nature of ULBP2 molecules in the Old World monkeys.  相似文献   

20.
In contrast to rhesus monkeys, substantial knowledge on cynomolgus monkey major histocompatibility complex (MHC) class II haplotypes is lacking. Therefore, 17 animals, including one pedigreed family, were thoroughly characterized for polymorphic Mhc class II region genes as well as their mitochondrial DNA (mtDNA) sequences. Different cynomolgus macaque populations appear to exhibit unique mtDNA profiles reflecting their geographic origin. Within the present panel, 10 Mafa-DPB1, 14 Mafa-DQA1, 12 Mafa-DQB1, and 35 Mafa-DRB exon 2 sequences were identified. All of these alleles cluster into lineages that were previously described for rhesus macaques. Moreover, about half of the Mafa-DPB1, Mafa-DQA1, and Mafa-DQB1 alleles and one third of the Mafa-DRB exon 2 sequences are identical to rhesus macaque orthologues. Such a high level of Mhc class II allele sharing has not been reported for primate species. Pedigree analysis allowed the characterization of nine distinct Mafa class II haplotypes, and seven additional ones could be deduced. Two of these haplotypes harbor a duplication of the Mafa-DQB1 locus. Despite extensive allele sharing, rhesus and cynomolgus monkeys do not appear to possess identical Mhc class II haplotypes, thus illustrating that new haplotypes were generated after speciation by recombination-like processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号