首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven citrus orchards on reduced- to no-pesticide spray programs were sampled for predacious mites in the family Phytoseiidae (Acari: Mesostigmata) in central and south central Florida. Inner and outer canopy leaves, open flowers, fruit, twigs, and trunk scrapings were sampled monthly between September 1994 and January 1996. Vines and ground cover plants were sampled monthly between September 1994 and January 1996 in five of these orchards. The two remaining orchards were on full herbicide programs and ground cover plants were absent. Thirty-three species of phytoseiid mites were identified from 35,405 specimens collected within citrus tree canopies within the seven citrus orchards, and 8,779 specimens from vines and ground cover plants within five of the seven orchards. The six most abundant phytoseiid species found within citrus tree canopies were: Euseius mesembrinus (Dean) (20,948), Typhlodromalus peregrinus (Muma) (8,628), Iphiseiodes quadripilis (Banks) (2,632), Typhlodromips dentilis (De Leon) (592), Typhlodromina subtropica Muma and Denmark (519), and Galendromus helveolus (Chant) (315). The six most abundant species found on vines or ground cover plants were: T. peregrinus (6,608), E. mesembrinus (788), T. dentilis (451), I. quadripilis (203), T. subtropica (90), and Proprioseiopsis asetus (Chant) (48). The remaining phytoseiids included: Amblyseius aerialis (Muma), A. herbicolus (Chant), A. largoensis (Chant), A. multidentatus (Chant), A. sp. near multidentatus, A. obtusus (Koch), Chelaseius vicinus (Muma), Euseius hibisci Chant, Galendromus gratus (Chant), Metaseiulus mcgregori (Chant), Neoseiulus mumai (Denmark), N. vagus (Denmark), Phytoscutus sexpilis (Muma), Phytoseiulus macropilis (Banks), Proprioseiopsis detritus (Muma), P. dorsatus (Muma), P. macrosetae (Banks), P. rotundus (Muma), P. solens (De Leon), Typhlodromips deleoni (Muma), T. dillus (De Leon), T. dimidiatus (De Leon), T. mastus Denmark and Muma, T. simplicissimus (De Leon), and T. sp. near tunus, and Typhlodromus transvaalensis (Nesbitt). Eighty-two ground cover plants or vines were sampled within the five orchards and one or more phytoseiids were collected from 71 of these plants. Five ground cover plants with the highest numbers of phytoseiids included: Bidens alba (L.) DC (1,420 mites within 13 species), Solanum americanum L. (1,355 mites within 8 species), Amaranthus spinosus L. (1,137 mites within 11 species), Gnaphalium pensylvanicum Willd. (844 mites within 8 species) and Richardia brasiliensis (Meg.) Gomez (354 mites within 8 species).  相似文献   

2.
Earwigs are usually considered pest predators in orchards. Because of its worldwide distribution, most research on earwigs focuses on the European earwig Forficula auricularia Linnaeus (Insecta: Dermaptera: Forficulidae). However, very little is known of this species in Mediterranean citrus orchards. Earwigs and aphids were collected monthly during 5 years (2006–2010) from citrus canopies. Two species of earwigs were found: F. auricularia and Forficula pubescens Gené (=Guanchia pubescens), with the latter seldom cited in the literature. The goals of this study were (i) to document the abundance of these two earwig species in Mediterranean citrus canopies; (ii) to determine whether they are positively or negatively associated with each other, or randomly distributed; (iii) to measure the interannual variation of the abundance of both species during a 5‐year period and (iv) to evaluate the potential role of earwigs as pest predators in citrus canopies. As compared to colder regions, F. auricularia active period in citrus canopies in our study site lasted longer. Both species co‐occurred randomly in canopies. In 2006, both species showed approximately the same abundance, but in 2010, F. pubescens abundance in canopies was 28 times greater than that of F. auricularia. The potential role of earwigs as pest predators is higher in the Mediterranean than in other colder regions, because of the longer active period. F. auricularia is a sedentary generalist predator, already present in citrus canopies at the onset of most pest outbreaks, while F. pubescens arrived later to the canopies, but most likely was abundant enough to contribute in the control of citrus pests.  相似文献   

3.
The distribution of carabid and cicindelid (Coleoptera: Carabidae) beetles in five distinct habitats (riparian, mature orchard, pine windbreak, young orchard, natural veld), within Tambuti Citrus Estate (Swaziland) was examined by pitfall trapping over 18 months. Habitats with high vegetation and litter cover had the highest species diversity and larger specimens, e.g. riparian border and pine windbreak, while the lowest diversity was observed in intensively managed mature citrus orchards. While species such as Tefflus delagorguei Guérin occurred in all the habitats sampled, certain species illustrated habitat specificity; e.g. Dromica ambitiosa Péringuey was observed only in the pine windbreaks while Haplotrachelus sp. Chaudoir occurred mainly in the vegetated riparian and natural veld habitats. Four unidentified carabid beetles were exclusive to the riparian border habitat. This habitat was the only one with a distinct assemblage of species in the agricultural mosaic studied. Multivariate analyses were used to assess the role of soil and environmental variables in relation to the ground beetle diversity within the agricultural mosaic studied.  相似文献   

4.
The federally endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) has reached critically low numbers. Exotic ants are a potential threat to H. a. ponceanus and other rare butterflies as they can attack immature stages. Ant surveys conducted in subtropical dry forests in Biscayne National Park documented ant species diversity and relative abundance. A caterpillar predator exclusion experiment using physical barriers in different combinations evaluated caterpillar survivorship of both early and late instar caterpillars exposed to different threats. Ant-caterpillar interactions were also documented by placing caterpillars on plants and observing physical interactions between caterpillars and ants. A total of 1418 ants comprising 25 ant species was captured and identified. In canopies of H. a. ponceanus host plants, 243 ants comprising 12 species were found. The four most common ants collected in the host plant canopies were Pseudomyrmex gracilis, Camponotus planatus, Cremastogaster ashmeadi, and Camponotus floridanus. The predator exclusion experiment revealed survivorship was significantly lower for early and late instar caterpillars without any physical barrier, as well as for early instars not protected by a mesh cage. Pseudomyrmex gracilis and C. floridanus were more aggressive towards caterpillars in comparison to other ant species; these two species ranked first and second in the “ant danger index” ranking predatory abilities of the four most common ant species. Pseudomyrmex gracilis is a common arboreal exotic ant in Biscayne National Park and presents a major threat to caterpillars during their earliest life stages.  相似文献   

5.
The biology and life table parameters of Agistemus industani Gonzalez, A. cyprius Gonzalez, and A. floridanus Gonzalez (Acari: Stigmaeidae) were studied under laboratory conditions using two food sources: Panonychus citri (McGregor) eggs or ice plant, Malephora crocea (Jacquin) Schwantes pollen at 25 degrees C. The larval, protonymph, deutonymph, and adult stages of A. industani fed on citrus red mite eggs. All active stages of A. industani, except the larva, fed on all P. citri stages and the larval stage could not feed on P. citri adults. All immature stages of A. industani fed on M. crocea pollen. Agistemus cyprius larvae fed on P. citri eggs and larvae or ice plant pollen. The nymphal stages fed on P. citri eggs, larvae, and protonymphs but not deutonymphs or adults while A. cyprius deutonymphs and adults fed on all P. citri stages. Adult and nymphal stages of A. cyprius fed on ice plant pollen and successfully completed their development while A. floridanus did not. Agistemus floridanus larvae fed only on P. citri eggs, while the other stages fed on P. citri eggs, larvae, and protonymphs. The developmental times from egg to adult for A. industani and A. cyprius when fed M. crocea pollen were 11.3 and 13.4 days, respectively. Agistemus floridanus was unable to complete its life cycle on a diet of only M. crocea pollen. Agistemus industani, A. cyprius, and A. floridanus completed development from egg to adult in 11.7, 13.8, and 10.8 days, respectively, when fed P. citri eggs. The intrinsic rate of increase (r(m)) values for A. cyprius and A. industani were 0.0311 and 0.1201 per day on the pollen diet. The net reproductive rate (Ro) was 3.58 for A. cyprius and 10.07 for A. industani with generation times (T) of 45.2 and 35.1 days, respectively, on the ice plant pollen diet. The r(m) values for A. cyprius, A. floridanus, and A. industani on the P. citri egg only diet were: 0.0562, 0.1001, and 0.1031 per day, respectively. The Ro values for each species fed P. citri eggs only were: 6.36, 7.90, and 18.70 for A. cyprius, A. floridanus, and A. industani and the generation times (T) for each of the three species were: 35.2, 29.9 and 37.8 days, respectively.  相似文献   

6.
Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain.  相似文献   

7.
《Journal of Asia》2022,25(4):101986
Damage by Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) in the northern Iranian citrus orchards has been led to spray by different chemical pesticides. The present study was conducted in the citrus orchard in Mazandaran province of Iran where with the exception of mineral oil treatments for scale insects, had not been sprayed with synthetic insecticides for six years. The purpose of this study was initially to investigate faun and seasonal activity of predaceous ground carabid beetles in the citrus orchards. Additionally, their role as predators of Ceratitis capitata (Wiedemann) pupae was evaluated under laboratory and field conditions. Predation in laboratory was evaluated by no choice feeding experiments while predation under field conditions was evaluated by molecular detection of the pest DNA in the gut contents of field-collected Carabids. A total of 3437 beetles of ten carabid species were collected from a non-chemical treatment citrus orchard. The results of the seasonal density fluctuation indicated increasing population in spring reaching the highest in September, simultaneously with the peak of fruit fly damage, and thereafter decreasing during winter when the pest was overwintering. However, three species, Harpalus rufipes, Broscus karelinii and Brachinus brevicollis were most abundant in the field collection but the results of no-choice experiments in the laboratory indicated H. rufipes, B. karelinii and Pterostichus macer were the most voracious predators on pupae. Results of gut content analysis of the voracious species indicated the positive testing for pest DNA in 79.16 % of H. rufipes, 76.92 % of B. karelinii and 75 % of P. macer of analyzed beetles. The results of the study strongly indicated that in citrus orchards where intensive spraying is eliminated, natural enemies such as Carabid beetles could play an important role in reducing pests such as medfly.  相似文献   

8.
The abundance and diversity of phytoseiid mites in the vegetal ground cover of a citrus orchard were surveyed by monthly samplings from October 2008 to July 2009. Six different vegetal cover management methods were studied: herbicide application without mowing (Gly), mowing without herbicide application (PV), mowing with herbicide application (AV), late mowing without herbicide application (LMV), cover crop (Neonotonia wightii, Fabaceae) without herbicide application (PNeo) and cover crop with herbicide application (ANeo). Eleven species were present in the ground cover, with Phytoseius rex and Proprioseiopsis mexicanus as major species. Species richness and densities (1.5 ± 4.5) in the Gly treatment were very low, except for one sample 4 months after herbicide treatment. The AV and PV treatments showed poor diversity and very low mite densities (1.2 ± 2.6 and 1.4 ± 1.5, respectively). The LMV treatment showed the highest diversity and high density of phytoseiid mites (6.9 ± 8.8). The ANeo and PNeo treatments also showed generally high diversity, but with variations in time and exhibited the highest density of phytoseiid mites (13.5 ± 12.7 and 13.4 ± 9.1, respectively). Neonotonia wightii as the cover crop seems to act as a reservoir of phytoseiid mites, sustaining abundant and diverse populations all year round. Some naturally occurring plant species such as Achyranthes aspera, Amaranthus dubius and Eleutheranthera ruderalis could also constitute favourable host plants for Phytoseiidae. Results are discussed in relation to the potential of collected phytoseiid species as candidates for biological control of phytophagous mites on Guadeloupean citrus orchards.  相似文献   

9.
The study was carried out to evaluate the effect of some insecticides and fungicides on the interaction between predacious mites of the families Phytoseiidae and Stigmaeidae on citrus. Euseius citrifolius Denmark and Muma, Euseius concordis (Chant) (Phytoseiidae), and Agistemus aff. bakeri (Stigmaeidae) were the most abundant species of predacious mites. No significant reduction of the population of stigmaeids was detected following the pesticide treatment. On the contrary, the population of those mites increased after the application of methidathion, petroleum oil, deltamethrin, cupric oxychloride and cuprous oxide, as compared to the population of those mites in the control plots. The chemicals promoting increased stigmaeid populations are some of those that promoted reduction of phytoseiid populations. A significant negative correlation was found between the numbers of phytoseiids and stigmaeids on citrus leaves immediately before treatments, and 33, 50, 83 and 105 days after treatment. A clear negative linear correlation between the number of predacious mites from both families was detected for benomyl, cupric oxychloride, cuprous oxide, thiophanate methyl, and control. Phytoseiid-stigmaeid interaction on citrus orchard is discussed.  相似文献   

10.
11.
Thrips were sampled from six nectarine orchards in the Dry Central Interior, British Columbia, Canada, between April and June 1993 using yellow sticky cards on posts spaced around the perimeter of each orchard. Although 12 identified species of thrips were captured, >90% of individuals were the western flower thrips, Frankliniella occidentalis (Pergande). The flight patterns and abundances of western flower thrips were compared between orchards located in two differently oriented valleys (N-S and E-W) and between orchards located close to or far from areas of wild land. Results indicate that densities of western flower thrips entering orchards, and their direction of movement, were related more to the external vegetation than either location within the two different valleys or general wind flow patterns. Western flower thrips tended to move into orchards close to ground level in early spring (late April and early May) but flew higher as ground cover grew taller and temperatures increased. Densities of western flower thrips at ground level were highest in an orchard with the densest dandelion ground cover. We conclude that the location of nectarine orchards in relation to wild areas is a major determinate of western flower thrips densities.  相似文献   

12.
Foliar sprays of 4 μg/ml oxamyl on sweet orange trees in a greenhouse slightly depressed the number of Tylenchulus semipenetrans larvae obtained from roots and soil, but similar treatments were not effective in two orchards. Soil drench treatments decreased the number of citrus nematode larvae obtained from roots or soil of citrus plants grown itt a greenhouse and in orchards. Exposure to 5-10 μg/ml of oxamyl in water was lethal to only a few second-stage larvae treated 10 days, and many second-stage larvae in 2.0 μg/ml oxamyl recovered motility when transferred to fresh water. Aqueous solutions of 50 and 100 μg/ml of oxamyl were toxic to citrus nematode larvae. Additional observations indicate that oxamyl interfered with hatch of citrus nematode larvae and was nematistatic and/or protected sweet orange roots from infection. Oxamyl degraded at different rates in two soils. The number of citrus nematode larvae that infected and developed on sweet orange roots was increased by an undetermined product of the degradation of oxamyl in soil, water, and possibly within plants. This product apparently was translocated in roots.  相似文献   

13.
Two-spotted spider mites,Tetranychus urticae Koch, were sampled in peach orchards to quantify abundance in trees over different types of ground cover to document the dispersal of mites from orchard-floor plants to trees. Mite populations developed more quickly and with higher densities in trees over ground cover compared to bare ground, and specifically over covers of predominantly narrowleaf vetch,Vicia angustifolia Reichard. Orchard floor plants such asVicia, Geranium, Lamium, andLepidium contained relatively high densities of mites during early spring, and may have formed the source for later peach-tree infestation.Paper no. 11982 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, U.S.A.  相似文献   

14.
The Mediterranean fruit fly Ceratitis capitata (Wiedemann) is a major citrus pest in Spain. Although medfly is being controlled chemically, alternative biorational strategies should be developed, like those based on conservation biological control of polyphagous predators. The ground beetle Pseudophonus rufipes (De Geer) is the most abundant carabid inhabiting the ground of citrus orchards in eastern Spain. However, little is known about its activity–density and predatory role against C. capitata in the citrus agroecosystem. Here, we report on its predatory potential on the medfly’s developmental stages that take place in the citrus ground. This carabid species preyed efficiently on C. capitata third instar larvae and especially on pupae but not on teneral adults. Moreover, predation under field conditions was evaluated by detecting C. capitata DNA remains using PCR-based gut-content analysis. Half-life DNA detectability of C. capitata was of 32.33 h. Pseudophonus rufipes specimens were field-collected after C. capitata sterilized pupae were deployed in a commercial citrus orchard. Thereafter, the carabids captured by pitfall traps were analyzed, being DNA-remains of C. capitata detected in 22.2% of them. Data reported here clearly suggest that P. rufipes could play an important role in regulating medfly populations in citrus orchards. This information is particularly useful when biological control conservation strategies are being considered to control this pest.  相似文献   

15.
As environmental stress increases positive (facilitative) plant interactions often predominate. Plant-plant associations (or lack thereof) can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces) and can provide valuable insights into whether “nurse plants” will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata), representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220–350 mm) in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25–33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial grasses might improve plant establishment, growth, or survival (or some combination thereof), particularly in drier areas. We suggest that land managers consider the nurse plant approach as a way to increase perennial grass abundance in the Great Basin. Controlled experimentation will provide further insights into the life stage-specific effectiveness and practicality of a nurse plant approach for ecological restoration in this region.  相似文献   

16.
Intercropping Ageratum conyzoides in citrus orchards may effectively suppress weeds and control other pests. Investigations showed that the inhibition of major weeds and soil pathogenic fungi in citrus orchards was significantly correlated with the allelochemicals released into the soil by intercropped A. conyzoides. Three flavones, ageratochromene, and its two dimers were isolated and identified from the A. conyzoides intercropped citrus orchard soil. These allelochemicals had different biological actions on major weeds and soil pathogenic fungi in the citrus orchard. Three flavones and ageratochromene could significantly inhibit the growth of weeds Bidens pilosa, Digitaria sanguinalis and Cyperus difformis, and spores germination of soil pathogenic fungi Phytophthora citrophthora, Pythium aphanidermatum and Fusarium solani. However, two dimers of ageratochromene had no inhibitory actions on them. The presence of these allelochemicals in soils suggests that they may be able to make a major contribution to control some weeds and diseases in citrus orchards. Further studies revealed that dynamic transformation between ageratochromene and its two dimers in the A. conyzoides intercropped citrus orchard soil was reversible, that is, ageratochromene released from ground A. conyzoides plants was transformed into its dimers, and the dimers can be remonomerized in the soils. However, this dynamic transformation did not occur in the soil with low organic matter and fertility. The dimerization was not correlated with microorganisms in the soil, but the biodegradation of both ageratochromene and its two dimers may have occurred, particularly in the soil with low organic matter and fertility. Our results strongly suggest that the reversible transformation between ageratochromene and its dimers in the A. conyzoides intercropped citrus orchard soil can be an important mechanism maintaining bioactive allelochemicals at an effective concentration, thus, sustaining the inhibition of weeds and pathogenic fungi in soil.  相似文献   

17.
  1. False codling moth, Thaumatotibia leucotreta is among the key constraints of the agricultural industry. Little is known about the population dynamics and genetic diversity of this pest in East Africa.
  2. The spatial–temporal population dynamics and genetic diversity of false codling moth were evaluated in citrus orchards in Kenya and Tanzania between May 2017 and August 2018 covering two fruiting seasons. The diversity of false codling moth sampled in these orchards and from solanaceous hosts, as well as from specimens received from Uganda, Sudan, and South Africa were assayed using the mitochondrial cytochrome oxidase I gene.
  3. A similar spatial–temporal pattern of false codling moth was found in both Kenya and Tanzania, with the most male moths in August 2017 and 2018. In Tanzania, the number of male moths caught at high and mid altitudes did not differ but were significantly higher than those caught at low altitude.
  4. A relatively low false codling moth genetic diversity was recorded at the sites where sampling was done in the respective countries as well as between specimens sampled from different host plants.
  5. The low false codling moth genetic diversity determined in this trial can be exploited in the management of the pest in the studied countries.
  相似文献   

18.
The exotic root weevil egg parasite,Tetrastichus haitiensis Gahan, imported from Puerto Rico and released in Florida between 1969 and 1971, was found established on citrus root weevil egg masses in 1978 near Oakhill, Florida. It was also recovered there from field-collected weevil egg masses from June to August 1978 and from citrus bouquets containing egg masses placed in the grove during July and August 1978. In addition, a new species ofTrichogramma was discovered. In the laboratory, this species parasitized egg masses of 4 species of weevils that attack citrus in Florida. These areDiaprepes abbreviatus (L.),Pachnaeus litus (Germar),P. opalus (Olivier) andArtipus floridanus Horn.  相似文献   

19.
We sampled mites in three apple orchards in Nova Scotia, Canada, that had been inoculated with pyrethroid-resistant Typhlodromus pyri and had a history of Tetranychus urticae outbreaks. The objective of this study was to monitor populations of T. urticae and phytoseiid predators on the ground and in trees and to track dispersal between the two habitats. Pesticides were the chief cause of differences in mite dynamics between orchards. In two orchards, application of favourably selective acaricides (abamectin, clofentezine) in 2002, coupled with predation by T. pyri in trees and Neoseiulus fallacis in ground cover, decreased high T. urticae counts and suppressed Panonychus ulmi. By 2003 phytoseiids kept the tetranychids at low levels. In a third orchard, application of pyrethroids (cypermethrin, lambda-cyhalothrin), plus an unfavourably selective acaricide (pyridaben) in 2003, suppressed phytoseiids, allowing exponential increases of T. urticae in the ground cover and in tree canopies. By 2004 however, increasing numbers of T. pyri and application of clofentezine strongly reduced densities of T. urticae in tree canopies despite high numbers crawling up from the ground cover. Another influence on T. urticae dynamics was the distribution of the phytoseiids, T. pyri and N. fallacis. When harsh pesticides were avoided, T. pyri were numerous in tree canopies. Conversely, only a few N. fallacis were found there, even when they were present in the ground cover and on tree trunks. Low numbers were sometimes due to pyrethroid applications or to scarcity of prey. Another factor was likely the abundance of T. pyri, which not only competes with N. fallacis, but also feeds on its larvae and nymphs. The scarcity of a specialist predator of spider mites in trees means that control of T. urticae largely depends on T. pyri, a generalist predator that is not particularly effective in regulating T. urticae. The Canadian Crown's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

20.
Research on plant–animal interactions has been focused on direct consumer interactions (i.e. plants as resources), but non-trophic interactions including providing shelter or interference with movement can also affect the fine-scale distribution of animals. In particular, non-trophic interactions that are positive could support threatened animal populations. Positive interactions have been used in the restoration of plant communities, but have not yet been extended to the management of animal habitat. In this study, we tested the hypothesis that non-trophic interactions influence the occurrence of an endangered lizard species in an arid shrub-annual system. At a location known to have a population of blunt-nosed leopard lizards (Gambelia sila), we geotagged 700 shrubs, measured shrub morphometric traits, collected biomass samples, and surveyed for lizard presence using scat detection dogs over two years. Relative to 2014, in 2013 plant productivity was high and lizard scats were found more frequently in areas with low invasive grass cover (i.e. residual dry matter, RDM). In 2014, plant productivity was low because of an extreme drought year, and lizard scats were more frequently observed under shrub canopies, particularly those with relatively dense cover. These findings support the novel theory that positive non-trophic interactions are a critical form of plant–animal interactions in addition to consumption. Dominant shrubs can act as a foundation species by functioning as a basal node in structuring both plant and animal communities through a network of interactions. Managing dominant plants, in addition to habitat, is therefore important for conserving animal species in arid ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号