首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Instream limestone sand application is used at many sites in Pennsylvania to neutralize acidic stream water resulting from acid deposition. However, questions remain about the effectiveness of limestone sand in the treatment of acid waters, such as reduced contact time at high flow, remobilization of aluminum, and adverse effects on macroinvertebrates. A 1‐year evaluation of limestone sand application to Bear Run, an acidic stream in southwestern Pennsylvania, was begun in 1999. Another nearby acid stream, Linn Run, served as a control. Water quality during baseflow and episodic acidification events, along with fish and macroinvertebrates, were monitored to evaluate impacts of the sand application. Hydrogen ion (H + ) concentration and total dissolved aluminum (TDA) were significantly reduced, and acid neutralizing capacity was significantly increased downstream of the limestone sand application compared with the upstream site on Bear Run. These parameters at the downstream sites were also different (∝ 0.10) from the comparable sites on the control stream. TDA and hydrogen ion concentrations were significantly decreased (∝ 0.10) compared with concentrations before the sand application to Bear Run but not on the control stream. No fish were present upstream of the sand application site, and only a few fish were found downstream at the mouth of Bear Run. Standing crop, number of taxa, and Shannon‐Weaver diversity index values indicated that macroinvertebrate populations were negatively impacted 300 m downstream from the sand application and improved at the site 1,600 m downstream. Although water quality was improved on Bear Run, benefits to macroinvertebrates depended on downstream location, and fish populations did not show improvement.  相似文献   

2.
Plants of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance were grown in sand with nutrient solutions. 35-d-old plants were subjected to 5 levels of salinity created by adding NaCl, CaCl2 and Na2SO4. Growth reduction caused by salinity was accompanied by increased Na+ and Cl- concentrations, Na+/K+ ratio, and decreased concentration of K+. The salt tolerant cv. Kharchia 65 showed better ionic regulation. Salinity up to 15.7 dS m-1 induced increased uptake of Na+ and Cl- but higher levels of salinity were not accompanied by further increase in uptake of these ions. Observed increases in Na+ and Cl- concentrations at higher salinities seemed to be the consequence of reduction in growth. Uptake of K+ was decreased; more in salt sensitive cultivar. This was also accompanied by differences in its distribution.  相似文献   

3.
Na+ and Ca2+ regulation were compared in two euryhaline species, killifish (normally estuarine-resident) and rainbow trout (normally freshwater-resident) during an incremental salinity increase. Whole-body unidirectional fluxes of Na+ and Ca2+, whole body Na+ and Ca2+, and plasma concentrations (trout only), were measured over 1-h periods throughout a total 6-h protocol of increasing salinity meant to simulate a natural tidal flow. Killifish exhibited significant increases in both Na+ influx and efflux rates, with efflux slightly lagging behind efflux up to 60% SW, but net Na+ balance was restored by the time killifish reached 100% SW. Whole body Na+ did not change, in agreement with the capacity of this species to tolerate daily salinity fluctuations in its natural habitat. In contrast, rainbow trout experienced a dramatic increase in Na+ influx (50-fold relative to FW values), but not Na+ efflux between 40 and 60% SW, resulting in a large net loading of Na+ at higher salinities (60–100% SW), and increases in plasma Na+ and whole body Na+ at 100% SW. Killifish were in negative Ca2+ balance at all salinities, whereas trout were in positive Ca2+ balance throughout. Ca2+ influx rate increased two- to threefold in killifish at 80 and 100% SW, but there were no concomitant changes in Ca2+ efflux. Ca2+ flux rates were affected to a larger degree in trout, with twofold increases in Ca2+ influx at 40% SW and sevenfold increases at 100% SW. Again, there was no change in Ca2+ efflux with salinity, so plasma Ca2+ concentration increased in 100% SW. As the killifish is regularly submitted to increased salinity in its natural environment, it is able to rapidly activate changes in unidirectional fluxes in order to ensure ionic homeostasis, in contrast to the trout.  相似文献   

4.
Patterns of dissolved organic carbon (DOC) and nitrogen (DON) delivery were compared between times of stormflow and baseflow in Paine Run, an Appalachian stream draining a 12.4 km2 forested catchment in the Shenandoah National Park (SNP), Virginia. The potential in-stream ecological impact of altered concentrations and/or chemical composition of DOM during storms also was examined, using standardized bacterial bioassays. DOC and DON concentrations in Paine Run were consistently low during baseflow and did not show a seasonal pattern. During storms however, mean DOC and DON concentrations approximately doubled, with maximum concentrations occurring on the rising limb of storm hydrographs. The rapid response of DOM concentration to changes in flow suggests a near-stream or in-stream source of DOM during storms. Stormflow (4% of the time, 36% of the annual discharge) contributed >50% of DOC, DON and NO3 flux in Paine Run during 1997. In laboratory bacterial bioassays, growth rate constants were higher on Paine Run stormflow water than on baseflow water, but the fraction of total DOM which was bioavailable was not significantly different. The fraction of the total stream DOC pool taken up by water column bacteria was estimated to increase from 0.03 ± 0.02% h–1 during baseflow, to 0.15 ± 0.04% h–1 during storms. This uptake rate would have a minimal effect on bulk DOM concentrations in Paine Run, but storms may still have considerable impact on the bacterial stream communities by mobilizing them into the water column and by supplying a pulse of DOM.  相似文献   

5.
High Na+ concentrations may disrupt K+ and Ca2+ transport and interfere with growth of many plant species, cotton (Gossypium hirsutum L.) included. Elevated Ca2+ levels often counteract these consequences of salinity. The effect of supplemental Ca2+ on influx of Ca2+, K+, and Na+ in roots of intact, salt-stressed cotton seedlings was therefore investigated. Eight-day-old seedlings were exposed to treatments ranging from 0 to 250 millimolar NaCl in the presence of nutrient solutions containing 0.4 or 10 millimolar Ca2+. Sodium influx increased proportionally to increasing salinity. At high external Ca2+, Na+ influx was less than at low Ca2+. Calcium influx was complex and exhibited two different responses to salinity. At low salt concentrations, influx decreased curvilinearly with increasing salt concentration. At 150 to 250 millimolar NaCl, 45Ca2+ influx increased in proportion to salt concentrations, especially with high Ca2+. Potassium influx declined significantly with increasing salinity, but was unaffected by external Ca2+. The rate of K+ uptake was dependent upon root weight, although influx was normalized for root weight. We conclude that the protection of root growth from salt stress by supplemental Ca2+ is related to improved Ca-status and maintenance of K+/Na+ selectivity.  相似文献   

6.
The physiology of hyper-salinity tolerance in teleost fish: a review   总被引:3,自引:0,他引:3  
Hyper-saline habitats (waters with salinity >35 ppt) are among the harshest aquatic environments. Relatively few species of teleost fish can tolerate salinities much above 50 ppt, because of the challenges to osmoregulation, but those that do, usually estuarine, euryhaline species, show a strong ability to osmoregulate in salinities well over 100 ppt. Typically, plasma Na+ and Cl concentrations rise slowly or not at all up to about 65 ppt. At higher salinities ion levels do rise, but the increase is small relative to the magnitude of increase in concentrations of the surrounding water. A number of adjustments are responsible for such strong osmoregulation. Reduced branchial water permeability is indicated by the observation that with the exposure to hyper-salinities drinking rates rise more slowly than the branchial osmotic gradient. Lower water permeability limits osmotic water loss and greatly reduces the salt load incurred in replacing it. Still, increased gut Na+/K+-ATPase (NAK) activity is necessary to absorb the larger gut salt load and increased HCO3 secretion is required to precipitate Ca2+ and some Mg2+ in the imbibed water to facilitate water absorption. All Na+ and Cl taken up must be excreted and increased branchial salt excreting capacity is indicated by elevated mitochondrion-rich cell density and size, gill NAK activity and expression of chloride channels. Excretion of Na+ and Cl occurs against a larger gradient than in seawater and calculation of the equilibrium potential for Na+ across the gill epithelium indicates that the trans-epithelial potential required for excretion of Na+ climbs with salinity up to about 65 ppt before leveling off due to the increasing plasma Na+ levels. During acute transition to SW or mildly hyper-saline waters, some species have shown the ability to upregulate branchial NAK activity rapidly and this may play an important role in limiting disturbances at higher salinities. It does not appear that the opercular epithelium, which in SW acts in a way that is functionally similar to the gills, continues to do so in hyper-saline waters. Little is know about the hormones involved in acclimation to hyper-salinity, but the few studies available suggest a role for cortisol, but not growth hormone and insulin-like growth factor. Despite the increased transport capacity evident in both the gill and gut in hyper-saline waters there is no clear trend toward increased metabolic rate. These studies provide a general outline of the mechanisms of osmoregulation in these species, but significant questions still remain.  相似文献   

7.
Sea bream (Sparus aurata Linneaus) was acclimated to three salinity concentrations, viz. 5 (LSW), 38 (SW) and 55psμ (HSW) and three water temperatures regimes (12, 19 and 26 °C) for five weeks. Osmoregulatory capacity parameters (plasma osmolality, sodium, chloride, cortisol, and branchial and renal Na+,K+-ATPase activities) were also assessed. Salinity and temperature affected all of the parameters tested. Our results indicate that environmental temperature modulates capacity in sea bream, independent of environmental salinity, and set points of plasma osmolality and ion concentrations depend on both ambient salinity and temperature. Acclimation to extreme salinity resulted in stress, indicated by elevated basal plasma cortisol levels. Response to salinity was affected by ambient temperature. A comparison between branchial and renal Na+,K+-ATPase activities appears instrumental in explaining salinity and temperature responses. Sea bream regulate branchial enzyme copy numbers (Vmax) in hyperosmotic media (SW and HSW) to deal with ambient temperature effects on activity; combinations of high temperatures and salinity may exceed the adaptive capacity of sea bream. Salinity compromises the branchial enzyme capacity (compared to basal activity at a set salinity) when temperature is elevated and the scope for temperature adaptation becomes smaller at increasing salinity. Renal Na+,K+-ATPase capacity appears fixed and activity appears to be determined by temperature.  相似文献   

8.
Salt Tolerance of Cotton: Some New Advances   总被引:5,自引:0,他引:5  
Referee: Dr. Lin Wu, Department of Environmental Horticulture, University of California, Davis, Davis, CA 95616 Cotton is a dual-purpose crop, widely used for fiber and oil purposes throughout the world. It is placed in the moderately salt-tolerant group of plant species with a salinity threshold level 7.7?dS m?1, its growth and seed yield being severely reduced at high salinity levels and different salts affect the cotton growth to a variable extent. However, inter- and intraspecific variation for cotton salt tolerance in cotton is considerable and thus can be exploited through specific selection and breeding for enhancing salt tolerance of the crop. There are contrasting reports regarding the crop response to salinity at different plant growth stages, but in most of them it is evident that the crop maintains its degree of salt tolerance consistently throughout its entire developmental phases. In the latter case an effective selection for salt tolerance is possible to be made at any growth stage of the crop. The pattern of uptake and accumulation of toxic ions (Na+ and/or Cl?) in tissues of plants subjected to saline conditions appears to be due mostly to the mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in cotton. Maintenance of high tissue K/Na and Ca/Na ratios is suggested to be an important selection criterion for salt tolerance in cotton. While judging the appropriate mechanism of ion transport across the membranes in view of existing literature, it was evident that the PM-ATPase responds to increasing supply of Na+ in the growth medium, but the activity of the transport proteins on the plasma membrane alone were insufficient to regulate intracellular Na+ levels. Vacuolar-ATPase is also not responsive to increased external Na+. The inability of V-ATPase to respond to Na+ gave indication of the lack of effective driving force for compartmentalization of Na+ in cotton. However, in view of some latest studies concenrning the role of some antioxidants in salt tolerance of cotton it was suggested that high levels of antioxidants and an active ascorbate-glutathione cycle are associated with salt tolerance in cotton. Genetic studies with cotton in relation to salinity tolerance exhibited that most of growth, yield, and fiber characteristics are genetically based and most being QTL controlled and variable. The high additive component of variation can be exploited for breeding to produce further improvement in the salt tolerance of cotton.  相似文献   

9.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

10.
S.G. Lu  C. Tang  Z. Rengel 《Plant and Soil》2004,264(1-2):231-245
The combination effects of waterlogging and salinity on redox potential (Eh), pH, electric conductivity (EC), water-soluble cations (NH4 +, K+, Na+, Ca2+, Mg2+, Fe2+, and Mn2+) and water-dispersible clay (WDC) were studied in six soils collected near salt lakes in western Australia. The soils with various salinity levels were incubated under a waterlogged condition at 30 °C for 12 weeks. The Eh, pH, EC, and cations of soil solutions were monitored over the waterlogged period. The Eh values generally dropped to the lowest point within 12 days of waterlogging, then increased slightly, and reached equilibrium after 4 weeks of waterlogging. Increasing salinity levels increased soil Eh. While waterlogging increased soil pH in the first 3–4 weeks, increasing salinity level decreased soil pH during the entire waterlogging period. Waterlogging increased the EC values in the first 2 weeks, partly due to dissolution of insoluble salts. The concentrations of water-soluble NH4 + were significantly increased with salinity level and waterlogging, and reached maximum values at week 2, and then declined to the initial level. Waterlogging and salinity increased the concentrations of water-soluble K+, Ca2+, Mg2+, Fe2+, and Mn2+ ions, but the magnitudes of changes were greatly affected by soil properties. Increases in water-soluble K+, Ca2+ and Mg2+ were attributed to increased solubility of insoluble salts, and increased competition for the adsorption sites of the soil exchange complex due to elevated concentrations of Na+, Fe2+ and Mn2+. Increases in water-soluble Fe2+ and Mn2+ induced by waterlogging were attributed to the dissolution of Fe and Mn oxides under reduced conditions. Waterlogging increased, but salinity decreased, the amounts of water-dispersible clay in the soils of low EC value. The higher salinity level can counteract the adverse effect of waterlogging on clay flocculation.  相似文献   

11.
A selected Glycine max (L.) salt-tolerant calluscell line (R100) was significantly more tolerant to salt than a salt-sensitiveline (S100) during exposure to salt stress. Growth (Fresh and Dry weights) ofthe R100 cell line declined significantly at NaCl concentrations greater than 75mM, while growth of the S100 cell line was already impaired at 25mM NaCl. Levels of Na+ and Cl inthe callus were elevated as the salt concentration increased, whileK+, Ca2+ and Mg2+ levels weremarkedly reduced. The lower s reduction and Na+accumulation found in the S100 callus corresponded with the higher callusdehydration during salinity. Calli grown on Miller's basal medium weresupplied with 100 mM NaCl for 12 days and then supplied with mediumwithout NaCl to relieve salinity stress. The Na+ andCl content decreased in both R100 and S100 cell lines duringthe first 24 h and reached normal levels four days after transferto the normal medium. This lower concentration was maintained until the end ofthe experiment. Concurrently, the K+ content andK+/Na+ ratio increased sharply and reached theirhighest levels within 24 h in both salt-sensitive and salt-tolerantcell lines. These data suggest that the inhibitory effects of salinization ongrowth and accumulation of potentially toxic ions (Na+,Cl) can be readily reversed when salinity is relieved.  相似文献   

12.
Debaryomyces nepalensis NCYC 3413, a food spoiling yeast isolated from rotten apple, has been previously demonstrated as halotolerant yeast. In the present study, we assessed its growth, change in cell size, and measured the intracellular polyol and cations (Na+ or K+) accumulated during growth in the absence and presence of different concentrations of salts (NaCl and KCl). Cells could tolerate 2 M NaCl and KCl in defined medium. Scanning electron microscopic results showed linear decrease in mean cell diameter with increase in medium salinity. Cells accumulated high amounts of K+ during growth at high concentrations of KCl. However, it accumulated low amounts of Na+ and high amounts of K+ when grown in the presence of NaCl. Cells grown in the absence of salt showed rapid influx of Na+/K+ on incubation with high salt. On incubation with 2 M KCl, cells grown at 2 M NaCl showed an immediate efflux of Na+ and rapid uptake of K+ and vice versa. To withstand the salt stress, osmotic adjustment of intracellular cation was accompanied by intracellular accumulation of polyol (glycerol, arabitol, and sorbitol). Based on our result, we hypothesize that there exists a balanced efflux and synthesis of osmolytes when D. nepalensis was exposed to hypoosmotic and hyperosmotic stress conditions, respectively. Our findings suggest that D. nepalensis is an Na+ excluder yeast and it has an efficient transport system for sodium extrusion.  相似文献   

13.
The relationship between Na+ accumulation and salt tolerance was tested by comparing subspecies of the halophyte, Atriplex canescens (fourwing saltbush), that differed markedly in Na+ content and Na:K ratios. Above ground tissues of one low-sodium and two high-sodium subspecies were compared with respect to cation accumulation, osmotic adjustment and growth along a salinity gradient in greenhouse trials. Plants of each subspecies were grown for 80 d on 2.2, 180, 540 and 720 mol m?3 NaCl. At harvest, A. canescens ssp. canescens had significantly lower Na+ levels, higher K+ levels and lower Na:K ratios in leaf and stem tissues than A. canescens ssp. macropoda and linearis over the salinity range (P < 0.05 or 0.01). Na:K ratios in leaves of the latter two, high-sodium, subspecies were approximately 2 on the lowest salinity treatment and ranged from 5 to 10 on the more saline solutions. By contrast, Na:K ratios in leaves of the low-sodium subspecies canescens, were only 0.4 on the lowest salinity and ranged narrowly from 1.7 to 2.3 at higher salinities. However, despite different patterns of Na+ and K+ accumulation, all three subspecies exhibited equally high salt tolerance and had similar osmotic pressures in their leaves or stems over the salinity range. Contrary to expectations, high salt tolerance was not necessarily dependent on high levels of Na+ accumulation in this species.  相似文献   

14.
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.  相似文献   

15.
Soil salinity is a major factor affecting crop productivity worldwide. This study explores mechanisms that contribute to salt tolerance in rice (Oryza sativa L.). Hydroponically grown, 2-week-old salt tolerant and sensitive indica rice varieties, Pokkali and Jaya, respectively, were exposed to a 48-h stress period with NaCl (0–250 mM). When exposed to 200 mM NaCl, micromolar levels of external Ca2+ elevated survival of both varieties. The Ca2+ levels required were lower for Pokkali than for Jaya, but resulted in significantly higher survival. Estimates of Na+ and K+ in root and shoot compartments were made by flame photometry, while X-ray microanalysis was used to localize Na+ in the extracellular matrix of the shoot. Transpirational bypass flow was estimated using the apoplastic tracer, 8-hydroxypyrene-1,3,6-trisulphonic acid, trisodium salt. Our data demonstrate a Ca2+-dependent reduction in Na+ transport to shoots, which correlated with a decline in bypass flow and of Na+ in the transpirational stream. In addition, the Na+ that enters the shoot is partitioned among several distinct compartments. Survival is inversely correlated with Na+ levels in the shoot apoplastic fluid, which surrounds the cell and influences cytosolic composition. Pokkali maintained lower Na+ in its apoplast compared with the salt sensitive Jaya at the same total shoot Na+. Na+ in the apoplast appears to be regulated by sequestration into intracellular compartments. This sink supplements the primary response of reducing Na+ influx into the shoot and effectively buffers the apoplastic fluid in Pokkali. All of these mechanisms are operational in Jaya as well but are deployed less effectively.  相似文献   

16.
王晓冬  王成  马智宏  侯瑞锋  高权  陈泉 《生态学报》2011,31(10):2822-2830
为研究盐胁迫下小麦幼苗生长及Na+、K+的吸收和积累规律,以中国春、洲元9369和长武134等3种耐盐性不同小麦品种为材料,采用非损伤微测技术检测盐胁迫2 d后的根系K+离子流变化,并对植株体内的Na+、K+含量进行测定。结果表明:短期(2d)盐胁迫对小麦生长有抑制作用,且对根系的抑制大于地上部,耐盐品种下降幅度小于盐敏感品种。盐胁迫下,小麦根际的 K+大量外流,盐敏感品种中国春K+流速显著高于耐盐品种长武134,最高可达15倍。小麦幼苗地上部分和根系均表现为Na+积累增加,K+积累减少,Na+/K+比随盐浓度增加而上升。中国春限Na+能力显著低于长武134,Na+/K+则显著高于长武134。综上所述,盐胁迫下造成小麦组织器官中Na+/K+比上升的主要原因是根系K+大量外流和Na+的过量积累,耐盐性不同的小麦品种间差异显著,并认为根系对K+的保有能力可能是作物耐盐性评价的一个重要指标。  相似文献   

17.
Salinity tolerance in wild (Glendale) and hatchery (Quinsam) pink salmon Oncorhynchus gorbuscha (average mass 0·2 g) was assessed by measuring whole body [Na+] and [Cl?] after 24 or 72 h exposures to fresh water (FW) and 33, 66 or 100% sea water (SW). Gill Na+, K+‐ATPase activity was measured following exposure to FW and 100% SW and increased significantly in both populations after a 24 h exposure to 100% SW. Whole body [Na+] and whole body [Cl?] increased significantly in both populations after 24 h in 33, 66 and 100% SW, where whole body [Cl?] differed significantly between Quinsam and Glendale populations. Extending the seawater exposure to 72 h resulted in no further increases in whole body [Na+] and whole body [Cl?] at any salinity, but there was more variability among the responses of the two populations. Per cent whole body water (c. 81%) was maintained in all groups of fish regardless of salinity exposure or population, indicating that the increase in whole body ion levels may have been related to maintaining water balance as no mortality was observed in this study. Thus, both wild and hatchery juvenile O. gorbuscha tolerated abrupt salinity changes, which triggered an increase in gill Na+, K+‐ATPase within 24 h. These results are discussed in terms of the preparedness of emerging O. gorbuscha for the marine phase of their life cycle.  相似文献   

18.
Mechanisms of sodium uptake by roots of higher plants   总被引:3,自引:0,他引:3  
The negative impact of soil salinity on agricultural yields is significant. For agricultural plants, sensitivity to salinity is commonly (but not exclusively) due to the abundance of Na+ in the soil as excess Na+ is toxic to plants. We consider reducing Na+ uptake to be the key, as well as the most efficient approach, to control Na+ accumulation in crop plants and hence to improve their salt resistance. Understanding the mechanism of Na+ uptake by the roots of higher plants is crucial for manipulating salt resistance. Hence, the aim of this review is to highlight and discuss recent advances in our understanding of the mechanisms of Na+ uptake by plant roots at both physiological and molecular levels. We conclude that continued efforts to investigate the mechanisms of root Na+ uptake in higher plants are necessary, especially that of low-affinity Na+ uptake, as it is the means by which sodium enters into plants growing in saline soils.  相似文献   

19.
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.  相似文献   

20.
It has been shown that the intracellular concentrations of Na+, K+, and Cl? ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na+ ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCl added to the medium was increased to 4%, the concentration gradient of Cl? ions changed insignificantly. It was found that D. thiodismutans contains two forms of hydrogenase—periplasmic and cytoplasmic. Both enzymes are capable of functioning in solutions with high ionic force; however they exhibit different sensitivities to Na+, K+, and Li+ salts and pH. The enzymes were found to be resistant to high concentrations of Na+ and K+ chlorides and Na+ bicarbonate. The cytoplasmic hydrogenase differed significantly from the periplasmic one in having much higher salt tolerance and lower pH optimum. The activity of these enzymes depended on the nature of both the cationic and anionic components of the salts. For instance, the inhibitory effect of NaCl was less pronounced than that of LiCl, whereas Na+ and Li+ sulfates inhibited the activity of both hydrogenase types to an equal degree. The highest activity of these enzymes was observed at low Na+ concentrations, close to those typical of cells growing at optimal salt concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号