首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We derive an alternative expression for a delayed logistic equation, assuming that the rate of change of the population depends on three components: growth, death, and intraspecific competition, with the delay in the growth component. In our formulation, we incorporate the delay in the growth term in a manner consistent with the rate of instantaneous decline in the population given by the model. We provide a complete global analysis, showing that, unlike the dynamics of the classical logistic delay differential equation (DDE) model, no sustained oscillations are possible. Just as for the classical logistic ordinary differential equation (ODE) growth model, all solutions approach a globally asymptotically stable equilibrium. However, unlike both the logistic ODE and DDE growth models, the value of this equilibrium depends on all of the parameters, including the delay, and there is a threshold that determines whether the population survives or dies out. In particular, if the delay is too long, the population dies out. When the population survives, i.e., the attracting equilibrium has a positive value, we explore how this value depends on the parameters. When this value is positive, solutions of our DDE model seem to be well approximated by solutions of the logistic ODE growth model with this carrying capacity and an appropriate choice for the intrinsic growth rate that is independent of the initial conditions.  相似文献   

2.
We consider two lumped age-structured models of juvenile against adult competition, one of which is a compartmental ordinary differential equation (ODE) model and one of which is a system of ODEs with delay derived from the McKendrick partial differential equation (PDE) model. Existence and stability of positive equilibria and existence of oscillatory solutions of both models are studied. Using a competition parameter, which measures the intra-specific competition, we investigate the effects of the competitive interactions between juveniles and adults on the dynamics of the population for both models. We find that these effects are different for the two models and discuss the differences from the modeling perspective. The discussion reveals an interesting relation between the length of the maturation period and the vital rates' dependence on the competition parameter.  相似文献   

3.
Wu H  Xue H  Kumar A 《Biometrics》2012,68(2):344-352
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches.  相似文献   

4.
We consider two numerical methods for the solution of a physiologically structured population (PSP) model with multiple life stages and discrete event reproduction. The model describes the dynamic behaviour of a predator-prey system consisting of rotifers predating on algae. The nitrate limited algal prey population is modelled unstructured and described by an ordinary differential equation (ODE). The formulation of the rotifer dynamics is based on a simple physiological model for their two life stages, the egg and the adult stage. An egg is produced when an energy buffer reaches a threshold value. The governing equations are coupled partial differential equations (PDE) with initial and boundary conditions. The population models together with the equation for the dynamics of the nutrient result in a chemostat model. Experimental data are used to estimate the model parameters. The results obtained with the explicit finite difference (FD) technique compare well with those of the Escalator Boxcar Train (EBT) method. This justifies the use of the fast FD method for the parameter estimation, a procedure which involves repeated solution of the model equations.  相似文献   

5.
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.  相似文献   

6.
本文提出并分析了两个关于人体T-细胞淋巴回归Ⅰ型病毒(HTL V-I)感染并带有坏死白血病细胞(ATL)进程的数学模型,一个常微分方程模型,一个离散时滞模型.首先对常微分方程模型进行了分析,运用相应的特征方程得到一个阈值Ro(CD4+ T-细胞的基本再生数).当R0≤1时,仅有未染病平衡态存在,并且给出了其稳定性;当R0>1时,有一个染病稳定态存在,并且此时它是稳定的.然后,我们在常微分方程模型中引入了一个离散时滞,通过对时滞模型的超越特征方程的分析,导出了与常微分方程模型中同样的稳定性条件,即时滞模型平衡态的稳定性与时滞的具体值无关.  相似文献   

7.
Y. X. Fu 《Genetics》1996,143(1):557-570
The purpose of this paper is to develop statistical tests of the neutral model of evolution against a class of alternative models with the common characteristic of having an excess of mutations that occurred a long time ago or a reduction of recent mutations compared to the neutral model. This class of population genetics models include models for structured populations, models with decreasing effective population size and models of selection and mutation balance. Four statistical tests were proposed in this paper for DNA samples from a population. Two of these tests, one new and another a modification of an existing test, are based on EWENS'' sampling formula, and the other two new tests make use of the frequencies of mutations of various classes. Using simulated samples and regression analyses, the critical values of these tests can be computed from regression equations. This approach for computing the critical values of a test was found to be appropriate and quite effective. We examined the powers of these four tests using simulated samples from structured populations, populations with linearly decreasing sizes and models of selection and mutation balance and found that they are more powerful than existing statistical tests of the neutral model of evolution.  相似文献   

8.
We study the spread of susceptible-infected-recovered (SIR) infectious diseases where an individual's infectiousness and probability of recovery depend on his/her “age” of infection. We focus first on early outbreak stages when stochastic effects dominate and show that epidemics tend to happen faster than deterministic calculations predict. If an outbreak is sufficiently large, stochastic effects are negligible and we modify the standard ordinary differential equation (ODE) model to accommodate age-of-infection effects. We avoid the use of partial differential equations which typically appear in related models. We introduce a “memoryless” ODE system which approximates the true solutions. Finally, we analyze the transition from the stochastic to the deterministic phase.  相似文献   

9.
主要研究了一类分数阶微分方程的最优控制问题.通过Oustaloup迭代逼近,可以将分数阶微分算子在频率域范围内进行近似.那么原先的分数阶微分方程就转换为一般的常微分方程.利用这个关系,可以得到关于分数阶微分方程的两个定理和一个引理.最后给出一个例子说明该方法的有效性.  相似文献   

10.
The goal of this work is to formulate a general Holling-type functional, or behavioral, response for continuous physiologically structured populations, where both the predator and the prey have physiological densities and certain rules apply to their interactions. The physiological variable can be, for example, a development stage, weight, age, or a characteristic length. The model leads to a Fredholm integral equation for the functional response, and, when inserted into population balance laws, it produces a coupled system of partial differential-integral equations for the two species, with a nonlocal integral term that arises from rules of interaction in the functional response. The general model is, typically, analytically intractable, but specialization to a structured prey-unstructured predator model leads to some analytic results that reveal interesting and unexpected dynamics caused by the presence of size-dependent handling times in the functional response. In this case, steady-states are shown to exist over long times, similar to the stable age-structure solutions for the McKendick-von Foerster model with exponential growth rates determined by the Euler-Lotka equation. But, for type II responses, there are early transient oscillations in the number of births that bifurcate in a few generations into either the decaying or growing steady-state. The bifurcation parameter is the initial level of prey. This special case is applied to a problem of the biological control of a structured pest population (e.g., aphids) by a predator (e.g., lady beetles).  相似文献   

11.
Optical biosensors are often used to measure kinetic rate constants associated with chemical reactions. Such instruments operate in the surface–volume configuration, in which ligand molecules are convected through a fluid-filled volume over a surface to which receptors are confined. Currently, scientists are using optical biosensors to measure the kinetic rate constants associated with DNA translesion synthesis—a process critical to DNA damage repair. Biosensor experiments to study this process involve multiple interacting components on the sensor surface. This multiple-component biosensor experiment is modeled with a set of nonlinear integrodifferential equations (IDEs). It is shown that in physically relevant asymptotic limits these equations reduce to a much simpler set of ordinary differential equations (ODEs). To verify the validity of our ODE approximation, a numerical method for the IDE system is developed and studied. Results from the ODE model agree with simulations of the IDE model, rendering our ODE model useful for parameter estimation.  相似文献   

12.
Delay differential, difference, and partial differential equation models are being used more extensively to explain single-species population oscillations and limit cycle behavior. Ordinary differential equation (ODE) models have been largely ignored. This is because first-order ODE models are inherently monotonic. Certainly this is not usual population behavior in the real world. If it is assumed that the per capita growth rate of a population changes over time as a result of regulating factors impinging on it, then a more realistic biological model results. The model translates into a second-order nonlinear ODE. Such a model can exhibit oscillatory and limit cycle as well as monotonic solutions, i.e., behavior for which non-ODE models have been used to explain. Although first-order ODE models are gross simplifications of real phenomena, ODE models in general should not be disregarded as important analytical tools.  相似文献   

13.
14.
15.
Patch choice and population size   总被引:5,自引:0,他引:5  
The distribution of animals between feeding patches has been the subject of considerable theoretical and empirical investigation. When all animals are equal and fitness is well represented by intake rate, the ideal free distribution requires the animals to be distributed in such a way as to equalize intake rate in each feeding patch. We refer to this as the equal rates policy. This approach ignores the effect of stochasticity in the food supply on starvation. It also ignores predation. An alternative approach is based on the assumption that each animal tries to minimize its death rate. An optimal policy now involves making decisions about which patch to use on the basis of the current level of energy reserves. We investigate a simple model of population dynamics in which over-winter mortality is either derived from animals adopting the equal rates policy or the optimal state-dependent policy to decide between two feeding patches. We show that the state-dependent policy results in a larger equilibrium population size than the equal rates policy. This difference can be considerable when the foraging environment is very stochastic. Furthermore, the state-dependent policy may result in a viable equilibrium population when the equal rates policy does not. The equilibrium under the state-dependent policy may be less stable than that under the equal rates policy. We identify conditions under which the state-dependent policy results in approximately equal intake rates on the two feeding patches. Levels of mortality as a result of predation are investigated. We show that, under some circumstances, the proportion of mortality that is due to predation may decrease as the predation pressure increases.  相似文献   

16.
MOTIVATION: The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. RESULTS: In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. AVAILABILITY: Software and benchmark models used for this publication can be made available upon request from the authors.  相似文献   

17.
The standard model for pair formation is generalized to include a maturation period. This model in the form of three coupled delay equations is a special case of the general age-structured model for a two-sex population. The exact conditions for the existence of an exponential (persistent) two-sex solution are derived. It is shown that this solution is unique and locally stable. In order to achieve these results the theory of homogeneous differential equations is extended to a class of homogeneous delay equations.  相似文献   

18.
We consider the interaction between a general size-structured consumer population and an unstructured resource. We show that stability properties and bifurcation phenomena can be understood in terms of solutions of a system of two delay equations (a renewal equation for the consumer population birth rate coupled to a delay differential equation for the resource concentration). As many results for such systems are available (Diekmann et al. in SIAM J Math Anal 39:1023–1069, 2007), we can draw rigorous conclusions concerning dynamical behaviour from an analysis of a characteristic equation. We derive the characteristic equation for a fairly general class of population models, including those based on the Kooijman–Metz Daphnia model (Kooijman and Metz in Ecotox Env Saf 8:254–274, 1984; de Roos et al. in J Math Biol 28:609–643, 1990) and a model introduced by Gurney–Nisbet (Theor Popul Biol 28:150–180, 1985) and Jones et al. (J Math Anal Appl 135:354–368, 1988), and next obtain various ecological insights by analytical or numerical studies of special cases.  相似文献   

19.
The paper investigates a class of SIS models of the evolution of an infectious disease in a heterogeneous population. The heterogeneity reflects individual differences in the susceptibility or in the contact rates and leads to a distributed parameter system, requiring therefore, distributed initial data, which are often not available. It is shown that there exists a corresponding homogeneous (ODE) population model that gives the same aggregated results as the distributed one, at least in the expansion phase of the disease. However, this ODE model involves a nonlinear “prevalence-to-incidence” function which is not constructively defined. Based on several established properties of this function, a simple class of approximating function is proposed, depending on three free parameters that could be estimated from scarce data.How the behaviour of a population depends on the level of heterogeneity (all other parameters kept equal) – this is the second issue studied in the paper. It turns out that both for the short run and for the long run behaviour there exist threshold values, such that more heterogeneity is advantageous for the population if and only if the initial (weighted) prevalence is above the threshold.This research was partly supported by the Austrian Science Foundation under contract N0. 15618-OEK.  相似文献   

20.
固定周期脉冲微分方程到状态依赖脉冲的转化及应用   总被引:1,自引:0,他引:1  
本文研究了一类二维状态依赖脉冲微分方程的阶1周期解存在性和轨道稳定性条件.然后,将一维固定周期脉冲的微分方程转化为二维状态依赖脉冲微分方程,研究其阶一周期解的存在性和稳定性.作为应用,我们研究了固定周期常数收获的Logistic方程的动力学性质,以及两个固定周期注射药物单室扩散模型的动力学性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号