首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-dependent protein kinases (CDPKs) belong to a unique family of enzymes containing a single polypeptide chain with a kinase domain at the amino terminus and a putative calcium-binding EF hands structure at the carboxyl terminus. From Arabidopsis thaliana, we have cloned three distinct cDNA sequences encoding CDPKs, which were designated as atcdpk6, atcdpk9 and atcdpk19. The full-length cDNA sequences for atcdpk6, atcdpk9 and atcdpk19 encode proteins with a molecular weight of 59343, 55376 and 59947, respectively. Recombinant atCDPK6 and atCDPK9 proteins were fully active as kinases whose activities were induced by Ca2+. Biochemical studies suggested the presence of an autoinhibitory domain in the junction between the kinase domain and the EF hands structure. Serial deletion of the four EF hands of atCDPK6 demonstrated that the integrity of the four EF hands was crucial to the Ca2+ response. All the three atcdpk genes were ubiquitously expressed in the plant as demonstrated by RNA gel blot experiments. Comparison of the genomic sequences suggested that the three cdpk genes have evolved differently. Using antibodies against atCDPK6 and atCDPK9 for immunohistochemical experiments, CDPKs were found to be expressed in specific cell types in a temporally and developmentally regulated manner.  相似文献   

2.
Powdery mildew locus O (Mlo) gene family is one of the largest seven transmembrane protein-encoding gene families. The Mlo proteins act as negative regulators of powdery mildew resistance and a loss-of-function mutation in Mlo is known to confer broad-spectrum resistance to powdery mildew. In addition, the Mlo gene family members are known to participate in various developmental and biotic and abiotic stress response-related pathways. Therefore, a genome-wide similarity search using the characterized Mlo protein sequences of Arabidopsis thaliana was carried out to identify putative Mlo genes in soybean (Glycine max) genome. This search identified 39 Mlo domain containing protein-encoding genes that were distributed on 15 of the 20 G. max chromosomes. The putative promoter regions of these Mlo genes contained response elements for different external stimuli, including different hormones and abiotic stresses. Of the 39 GmMlo proteins, 35 were rich (8.7–13.1 %) in leucine, while five were serine-rich (9.2–11.9 %). Furthermore, all the GmMlo members were localized in the plasma membrane. Phylogenetic analysis of the GmMlo and the AtMlo proteins classified them into three main clusters, and the cluster I comprised two sub-clusters. Multiple sequence alignment visualized the location of seven transmembrane domains, and a conserved CaM-binding domain. Some of the GmMlo proteins (GmMlo10, 20, 22, 23, 32, 36, 37) contained less than seven transmembrane domains. The motif analysis yielded 27 motifs; out of these, motif 2, the only motif present in all the GmMlos, was highly conserved and three amino acid residues were essentially invariant. Five of the GmMlo members were much smaller in size; presumably they originated through deletion following a gene duplication event. The presence of a large number of GmMlo members in the G. max genome may be due to its paleopolyploid nature and the large genome size as compared to that of Arabidopsis. The findings of this study may further help in characterization and isolation of individual GmMlo members.  相似文献   

3.
By systematic sequencing of a flower bud cDNA library from Arabidopsis thaliana, we have identified four cDNAs encoding polygalacturonase. The corresponding genes, together with seven other A. thaliana genes present in the databases, form a small gene family. Sequence comparisons of the deduced polypeptides within the gene family or with other plant polygalacturonases allow classification of the genes into different clades. Five polygalacturonases, including all those isolated from the flower buds, are closely related to the enzyme in pollen. Of the six remaining polygalacturonases, three are more closely related to the abscission-specific type of enzyme and two others to the fruit polygalacturonase. The last one is more distantly related to the others and might correspond to a new type of polygalacturonase. Expression of the different genes was analysed on Northern blots and by a PCR-based strategy. Results indicate that if, as expected, the cDNAs isolated from the flower bud library are strongly expressed in pollen, other genes are expressed at a low level in young developing tissues, such as in seedlings and roots, suggesting that they could be implicated in the cell wall modifications observed during cell elongation and/or expansion which occur in these tissues.  相似文献   

4.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   

5.
Two new loci have been found to be clustered with five other genes for the nitrate assimilation pathway in the Chlamydomonas reinhardtii genome. One gene, located close to the 3′-end of the high-affinity nitrate transporter (HANT) gene Nrt2;2, corresponds to the nitrite reductase (NiR) structural gene Nii1. This is supported by a number of experimental findings: (i) NiR-deficient mutants have lost Nii1 gene expression; (ii) Nii1 mRNA accumulation is co-regulated with the expression of other structural genes of the nitrate assimilation pathway; (iii) nitrite (nitrate) utilization ability is recovered in the NiR mutants by functional complementation with a wild-type Nii1 gene; (iv) the elucidated NII1 amino acid sequence is highly similar to that of the cyanobacterial and higher-plant enzyme, and contains the predicted domains for plastidic ferredoxin-NiRs. Thus, the mutant phenotype and the mRNA sequence and expression of the Nii1 gene have been unequivocally related. Accumulation of mRNA for the second locus identified, Lde1 (light-dependent expression), was not regulated by nitrogen, but like nitrate-assimilation clustered genes, its expression was down-regulated in the dark. Received: 27 November 1997 / Accepted: 19 January 1998  相似文献   

6.
A family of calcium-responsive protein kinases is abundant in plant cell extracts but has not been identified in animals and fungi. These enzymes have a unique structure consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. In this report, we present the amino acid sequences for eight new Arabidopsis cDNA clones encoding isoforms of this enzyme. Three isoforms were expressed as fusion proteins in Escherichia coli and exhibited calcium-stimulated protein kinase activity. We propose CPK as the gene designation for this family of enzymes and describe a phylogenetic analysis for all known isoforms.  相似文献   

7.
The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana   总被引:12,自引:0,他引:12  
Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catalyzes the first step in the biosynthesis of phenylpropanoids, and is usually encoded by a multi-gene family. Genomic clones for three Arabidopsis thaliana PAL genes containing the entire protein-coding region and upstream and downstream sequences have been obtained and completely sequenced. Two A. thaliana PAL genes (PAL1 and PAL2) are structurally similar to PAL genes that have been cloned from other plant species, with a single intron at a conserved position, and a long highly conserved second exon. Previously identified promoter motifs plus several additional sequence motifs were found in the promoter regions of PAL1 and PAL2. Expression of PAL1 and PAL2 is both qualitatively and quantitatively similar in different plant organs and under various inductive conditions. A third A. thaliana PAL gene, PAL3, differs significantly from PAL1 and PAL2 and other sequenced plant PAL genes. PAL3 contains an additional intron, and its deduced amino acid sequence is less homologous to other PAL proteins. The PAL3 promoter region lacks several sequence motifs conserved between A. thaliana PAL1 and PAL2, as well as motifs described in other genes involved in phenylpropanoid metabolism. A. thaliana PAL3 was expressed at very low levels under the conditions examined.  相似文献   

8.
T Nakayama  S Takechi  T Ohshige  K Kondo  K Yamamoto 《Gene》1991,108(2):311-312
The nucleotide sequences of two genes (H4-III and H4-IV) from the chicken H4 histone-encoding gene family have been determined. The four H4 genes, including the previously sequenced H4-I and H4-II genes, encode the same amino acid sequence and possess several copies of the possible Sp1-binding sequences on the coding and noncoding strands within the 5'-flanking regions.  相似文献   

9.
10.
The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana   总被引:6,自引:1,他引:5  
Conjugation of multiple ubiquitins serves as a committed step in the degradation of a variety of intracellular eukaryotic proteins by the 26S proteasome. Conjugates are formed via a three-enzyme cascade; the initial step requires ubiquitin-activating enzyme (E1), which couples ubiquitin activation to ATP hydrolysis. Previously, we showed that many higher plants contain multiple E1 proteins and described several E1 genes from wheat. To facilitate understanding of the roles of the different plant E1s, we characterized the E1 gene and protein family from Arabidopsis thaliana . Arabidopsis E1s are encoded by two genes ( AtUBA1 and AtUBA2 ) that synthesize approximately 123-kDa proteins with 81% amino acid sequence identity to each other and 44–75% sequence identity with confirmed E1s from other organisms. Like other E1 proteins, AtUBA1 and 2 contain a cysteine residue in the putative active site for forming the ubiquitin thiol-ester intermediate. Enzymatic analysis of the corresponding proteins expressed in Escherichia coli demonstrated that both proteins activate ubiquitin in an ATP-dependent reaction and transfer the activated ubiquitin to a variety of Arabidopsis E2s with near equal specificity. Expression studies by quantitative RT-PCR and histochemistry with transgenic plants containing AtUBA promoter-β-glucuronidase-coding region fusions showed that the AtUBA1 and 2 genes are co-expressed in most, if not all, Arabidopsis tissues and cells. Collectively, the data indicate that E1 proteins, and presumably the rest of the ubiquitin pathway, are present throughout Arabidopsis . They also show that the AtUBA1 and 2 genes are not differentially expressed nor do they encode E1s with dramatically distinct enzymatic properties.  相似文献   

11.
Eighteen genes that encode the proteins with highly conserved Domain of Unknown Function 724 (DUF724) and Agenet domains were identified in plant taxa but not in animals and fungi. They are actively expressed in many different plant tissues, implying that they may play important roles in plants. Here we report the characterization of their structural organizations, expression patterns and protein–protein interactions. In Arabidopsis, the DUF724 genes were expressed in roots, leaves, shoot apical meristems, anthers and pollen grains. At least seven of the ten Arabidopsis DUF724 proteins (AtDuf1 to AtDuf10) were localized in nucleus. Three of them (AtDuf3, AtDuf5 and AtDuf7) may form homodimers or homopolymers, but did not interact with other members of the same family. Together with the significant similarity between DUF724 proteins and FMRP in the fundamental and characteristic molecular architecture, the results implies the DUF724 gene family may be involved in the polar growth of plant cells via transportation of RNAs.  相似文献   

12.
13.
14.
Arabidopsis spiral1 (spr1) mutants show a right-handed helical growth phenotype in roots and etiolated hypocotyls due to impaired directional growth of rapidly expanding cells. SPR1 encodes a small protein with as yet unknown biochemical functions, though its localization to cortical microtubules (MTs) suggests that SPR1 maintains directional cell expansion by regulating cortical MT functions. The Arabidopsis genome contains five SPR1-LIKE (SP1L) genes that share high sequence identity in N- and C-terminal regions. Overexpression of SP1Ls rescued the helical growth phenotype of spr1, indicating that SPR1 and SP1L proteins share the same biochemical functions. Expression analyses revealed that SPR1 and SP1L genes are transcribed in partially overlapping tissues. A combination of spr1 and sp1l mutations resulted in randomly oriented cortical MT arrays and isotropic expansion of epidermal cells. These observations suggest that SPR1 and SP1Ls act redundantly in maintaining the cortical MT organization essential for anisotropic cell growth, and that the helical growth phenotype of spr1 results from a partially compromised state of cortical MTs. Additionally, inflorescence stems of spr1 sp1l multiple mutants showed a right-handed tendril-like twining growth, indicating that a directional winding response may be conferred to the non-directional nutational movement by modulating the expression of SPR1 homologs.  相似文献   

15.
A second cytosolic ascorbate peroxidase (cAPX; EC 1.11.1.11) gene from Arabidopsis thaliana has been characterised. This second gene (designated APX1b) maps to linkage group 3 and potentially encodes a cAPX as closely related to that from other dicotyledonous species as to the other member of this gene family (Kubo et al, 1993, FEBS Lett 315: 313–317; here designated APX1a), which maps to linkage group 1. In contrast, the lack of sequence similarity in non-coding regions of the genes implies that they are differentially regulated. Under non-stressed conditions only APX1a is expressed. APX1b was identified during low-stringency probing using a cDNA coding for pea cAPX which, in turn, was recovered from a cDNA library by immunoscreening with an antiserum raised against tea plastidial APX (pAPX). No pAPX cDNAs were recovered, despite the antiserum displaying specificity for pAPX in Western blots.Abbreviations ATG methionine translation initiation codon - bp base pair - cAPX cytosolic ascorbate peroxidase - pAPX plastidial ascorbate peroxidase - RFLP restriction fragment length polymorphism Accession numbers: The APX1b sequence is in the EMBL database under accession number X80036M.S. gratefully acknowledges the support from the Junta Nacional de Investigaçâo Cientifica e Tecnológia, Portugal (grant number BD/394/90-IE). This work was supported by the Biotechnological and Biological Sciences Research Council through a grant-in-aid to the John Innes Centre.  相似文献   

16.
17.
Torki M  Mandaron P  Mache R  Falconet D 《Gene》2000,242(1-2):427-436
Pectin, as one of the major components of plant cell wall, has been implicated in many developmental processes occurring during plant growth. Among the different enzymes known to participate in the pectin structure modifications, polygalacturonase (PG) activity has been shown to be associated with fruit ripening, organ abscission and pollen grain development. Until now, sequence analyses of the deduced polypeptides of the plant PG genes allowed their grouping into three clades corresponding to genes involved in one of these three activities. In this study, we report the sequence of three genomic clones encoding PG in Arabidopsis thaliana. These genes, together with 16 other genes present in the databases form a large gene family, ubiquitously expressed, present on the five chromosomes with at least two gene clusters on chromosomes II and V, respectively. Phylogenetic analyses suggest that the A. thaliana gene family contains five classes of genes, with three of them corresponding to the previously defined clades. Comparison of positions and numbers of introns among the A. thaliana genes reveals structural conservation between genes belonging to the same class. The pattern of intron losses that could have given rise to the PG gene family is consistent with a mechanism of intron loss by replacement of an ancestral intron-containing gene with a reverse-transcribed DNA copy of a spliced mRNA. Following this event of intron loss, the acquisition of introns in novel positions is consistent with a mechanism of intron gain at proto-splice sites.  相似文献   

18.
19.
20.
T Nakayama 《Gene》1991,102(2):289-290
The nucleotide sequences of two genes (H3-II and H3-III) from the chicken H3 histone-encoding gene family have been determined. H3-II and H3-III, respectively, possess possible AP-1- and Sp1-binding sequence elements of the forms 5'-CGAGTCAG and 5'-GGGCGGG, whereas all three H3 genes, including the previously sequenced H3-I gene, encode the same amino acid sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号