首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have any apparent role in the regulation of gene expression or heterochromatin function. Rather, we find the modification has a role in DNA damage response. Loss of Set9 activity or mutation of H4-K20 markedly impairs cell survival after genotoxic challenge and compromises the ability of cells to maintain checkpoint mediated cell cycle arrest. Genetic experiments link Set9 to Crb2, a homolog of the mammalian checkpoint protein 53BP1, and the enzyme is required for Crb2 localization to sites of DNA damage. These results argue that H4-K20 methylation functions as a "histone mark" required for the recruitment of the checkpoint protein Crb2.  相似文献   

2.
The cellular responses to double-stranded breaks (DSBs) typically involve the extensive accumulation of checkpoint proteins in chromatin surrounding the damaged DNA. One well-characterized example involves the checkpoint protein Crb2 in the fission yeast Schizosaccharomyces pombe. The accumulation of Crb2 at DSBs requires the C-terminal phosphorylation of histone H2A (known as gamma-H2A) by ATM family kinases in chromatin surrounding the break. It also requires the constitutive methylation of histone H4 on lysine-20 (K20). Interestingly, neither type of histone modification is essential for the Crb2-dependent checkpoint response. However, H4-K20 methylation is essential in a crb2-T215A strain that lacks a cyclin-dependent kinase phosphorylation site in Crb2. Here we explain this genetic interaction by describing a previously overlooked effect of the crb2-T215A mutation. We show that crb2-T215A cells are able to initiate but not sustain a checkpoint response. We also report that gamma-H2A is essential for the DNA damage checkpoint in crb2-T215A cells. Importantly, we show that inactivation of Cdc2 in gamma-H2A-defective cells impairs Crb2-dependent signaling to the checkpoint kinase Chk1. These findings demonstrate that full Crb2 activity requires phosphorylation of threonine-215 by Cdc2. This regulation of Crb2 is independent of the histone modifications that are required for the hyperaccumulation of Crb2 at DSBs.  相似文献   

3.
DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, ‘mediator’ proteins are in charge of recruiting ‘signal transducers’ to molecules ‘sensing’ the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. Here we show that, despite low sequence conservation, Rad9 exhibits a tandem tudor domain structurally close to those found in human/mouse 53BP1 and fission yeast Crb2. Moreover, this region is important for the resistance of Saccharomyces cerevisiae to different genotoxic stresses. It does not mediate direct binding to a histone H3 peptide dimethylated on K79, nor to a histone H4 peptide dimethylated on lysine 20, as was demonstrated for 53BP1. However, the tandem tudor region of Rad9 directly interacts with single-stranded DNA and double-stranded DNAs of various lengths and sequences through a positively charged region absent from 53BP1 and Crb2 but present in several yeast Rad9 homologs. Our results argue that the tandem tudor domains of Rad9, Crb2 and 53BP1 mediate chromatin binding next to double-strand breaks. However, their modes of chromatin recognition are different, suggesting that the corresponding interactions are differently regulated.  相似文献   

4.
《Epigenetics》2013,8(5):273-276
Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological pathways. Methylation of histone H4 lysine 20 (H4K20me) plays critical roles in diverse cellular processes such as gene expression, cell cycle progression and DNA damage repair, with each of the three degrees of methylation (mono- di- and tri-methylation) making a unique contribution. Here we discuss recent studies of H4K20me that have greatly improved our understanding of the regulation and function of this fascinating histone modification.  相似文献   

5.
Recently, histone H4 lysine 20 and H3 lysine 79 methylations were functionally linked to DNA damage checkpoint. The crosstalk between histone methylation and the S-M checkpoint, however, has remained unclear. Here, we show that H3 lysine 9 (K9) and lysine 36 (K36) methylations catalyzed by two histone methyltransferases Clr4 and Set2 are involved in hydroxyurea (HU)-induced replication checkpoint. The clr4-set2 double mutants besides histone H3-K9 and K36 double mutants exhibited HU-sensitivity, a defective HU-induced S-M checkpoint, and a significant reduction of HU-induced phosphorylation of Cdc2. Intriguingly, the clr4-set2 double mutations impaired the HU-induced accumulation of a mitotic inhibitor Mik1. Double mutants in Alp13 and Swi6, which can specifically bind to H3-K36 and K9 methylations, exhibited phenotypes similar to those of the clr4-set2 mutants. Together, these findings suggest that methylations of histone H3-K9 and K36 by Clr4 and Set2 are functionally linked to DNA replication checkpoint via accumulation of Mik1.  相似文献   

6.
Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20). L(3)MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3)mbt on the other hand stabilizes the monomethyl mark, as L(3)mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1) while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3)mbt, is dispensable.  相似文献   

7.
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys(79) methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.  相似文献   

8.
Botuyan MV  Lee J  Ward IM  Kim JE  Thompson JR  Chen J  Mer G 《Cell》2006,127(7):1361-1373
Histone lysine methylation has been linked to the recruitment of mammalian DNA repair factor 53BP1 and putative fission yeast homolog Crb2 to DNA double-strand breaks (DSBs), but how histone recognition is achieved has not been established. Here we demonstrate that this link occurs through direct binding of 53BP1 and Crb2 to histone H4. Using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we show that, despite low amino acid sequence conservation, both 53BP1 and Crb2 contain tandem tudor domains that interact with histone H4 specifically dimethylated at Lys20 (H4-K20me2). The structure of 53BP1/H4-K20me2 complex uncovers a unique five-residue 53BP1 binding cage, remarkably conserved in the structure of Crb2, that best accommodates a dimethyllysine but excludes a trimethyllysine, thus explaining the methylation state-specific recognition of H4-K20. This study reveals an evolutionarily conserved molecular mechanism of targeting DNA repair proteins to DSBs by direct recognition of H4-K20me2.  相似文献   

9.
The Rad6 ubiquitin-conjugating enzyme in Saccharomyces cerevisiae is known to interact with three separate ubiquitin ligase proteins (Ubr1, Rad18, and Bre1) specific to different targets. The Rad6/Rad18 complex is central to translesion synthesis and the family of DNA transactions known as post-replication repair (PRR). A less well-known aspect of Rad6-mediated DNA repair, however, involves its function with Bre1 in mono-ubiquitinating the histone H2B residue lysine 123. Here, we review how this ubiquitination impacts histone H3 methylation, and how this in turn impacts the DNA damage response. In S. cerevisiae this pathway is required for checkpoint activation in G1, and contributes to DNA repair via the homologous recombination pathway (HRR) in G2 cells. Thus, RAD6 clearly plays a role in HRR in addition to its central role in PRR. We also summarize what is known about related repair pathways in other eukaryotes, including mammals. Recent literature emphasizes the role of methylated histones in S. cerevisiae, Schizosaccharomyces pombe and mammals in attracting the related DNA damage checkpoint proteins Rad9, Crb2 and 53BP1, respectively, to chromatin at the sites of DNA double-strand breaks. However, the specific histone modification pathways involved diverge in these different eukaryotes.  相似文献   

10.
Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.  相似文献   

11.
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.  相似文献   

12.
13.
14.
H4K20me1 is a critical histone lysine methyl modification in eukaryotes. It is recognized and “read” by various histone lysine methyl modification binding proteins. In this study, the function of MBTD1, a member of the Polycomb protein family containing four MBT domains, was comprehensively studied in mouse oocyte meiotic maturation. The results showed that depletion of MBTD1 caused reduced expression of histone lysine methyl transferase Pr-Set7 and H4K20me1 as well as increased oocyte arrest at the GV stage. Increased γH2AX foci were formed, and DNA damage repair checkpoint protein 53BP1 was downregulated. Furthermore, depletion of MBTD1 activated the cell cycle checkpoint protein Chk1 and downregulated the expression of cyclin B1 and cdc2. MBTD1 knockdown also affected chromosome configuration in GV stage oocytes and chromosome alignment at the MII stage. All these phenotypes were reproduced when the H4K20 methyl transferase Pr-Set7 was depleted. Co-IP demonstrated that MBTD1 was correlated with Pr-Set7 in mouse oocytes. Our results demonstrate that MBTD1 is associated with Pr-Set7 to stabilize H4K20me1 in mouse oocyte meiotic maturation.  相似文献   

15.
Histone methylation acts as an epigenetic regulator of chromatin activity through the modification of arginine and lysine residues on histones H3 and H4. In the case of lysine, this includes the formation of mono-, di-, or trimethyl groups, each of which is presumed to represent a distinct functional state at the cellular level. To examine the potential developmental roles of these modifications, we determined the global patterns of lysine methylation involving K9 on histone H3 and K20 on histone H4 in midgestation mouse embryos. For each lysine target site, we observed distinct subnuclear distributions of the mono- and trimethyl versions in 10T1/2 cells that were conserved within primary cultures and within the 3D-tissue architecture of the embryo. Interestingly, three of these modifications, histone H3 trimethyl K9, histone H4 monomethyl K20, and histone H4 trimethyl K20 exhibited marked differences in their distribution within the neuroepithelium. Specifically, both histone H3 trimethyl K9 and H4 monomethyl K20 were elevated in proliferating cells of the neural tube, which in the case of the K9 modification was limited to mitotic cells on the luminal surface. In contrast, histone H4 trimethyl K20 was progressively lost from these medial regions and became enriched in differentiating neurons in the ventrolateral neural tube. The inverse relationship of histone H4 K20 methyl derivatives is even more striking during skeletal and cardiac myogenesis where the accumulation of the trimethyl modification in pericentromeric heterochromatin suggests a role in gene silencing in postmitotic muscle cells. Importantly, our results establish that histone lysine methylation occurs in a highly dynamic manner that is consistent with their function in an epigenetic program for cell division and differentiation.  相似文献   

16.
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.  相似文献   

17.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

18.
Activation of DNA damage checkpoints requires the rapid accumulation of numerous factors to sites of genomic lesions, and deciphering the mechanisms of this targeting is central to our understanding of DNA damage response. Histone modification has recently emerged as a critical element for the correct localization of damage response proteins, and one key player in this context is the fission yeast checkpoint mediator Crb2. Accumulation of Crb2 at ionizing irradiation-induced double-strand breaks (DSBs) requires two distinct histone marks, dimethylated H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX). A tandem tudor motif in Crb2 directly binds H4K20me2, and this interaction is required for DSB targeting and checkpoint activation. Similarly, pH2AX is required for Crb2 localization to DSBs and checkpoint control. Crb2 can directly bind pH2AX through a pair of C-terminal BRCT repeats, but the functional significance of this binding has been unclear. Here we demonstrate that loss of its pH2AX-binding activity severely impairs the ability of Crb2 to accumulate at ionizing irradiation-induced DSBs, compromises checkpoint signaling, and disrupts checkpoint-mediated cell cycle arrest. These impairments are similar to that reported for abolition of pH2AX or mutation of the H4K20me2-binding tudor motif of Crb2. Intriguingly, a combined ablation of its two histone modification binding modules yields a strikingly additive reduction in Crb2 activity. These observations argue that binding of the Crb2 BRCT repeats to pH2AX is critical for checkpoint activity and provide new insight into the mechanisms of chromatin-mediated genome stability.DNA damage response is an essential cellular guard that protects the genetic material from a constant barrage of genotoxic agents. To ensure their survival after genomic insult, cells orchestrate a signaling cascade that leads to checkpoint-mediated cell cycle arrest and the repair of damaged DNA (16, 35). A failure in this process can have catastrophic cellular consequences leading to the development of numerous disorders such as cancer (18, 30, 32). Because of its intimate connection with human health, deciphering the molecular mechanisms of DNA damage response is of high interest (16, 20).Recently, histone posttranslational modification has emerged as one element that is critical for ensuring a faithful response to genomic challenge (7, 31). An octamer of the four core histones, H3, H4, H2A, and H2B, forms the core protein component of chromatin, and cells possess a considerable number of enzymes that target histones for posttranslation modification (21). These marks can impinge upon many aspects of DNA biology by acting to directly alter chromatin structure or by serving as a binding scaffold for the recruitment of regulatory factors (24).In the context of DNA damage response, one factor that is intimately linked with histone modification is the fission yeast DNA damage checkpoint protein Crb2. After genomic insult, DNA damage checkpoints function to halt cell cycle progression, ensuring sufficient time for lesion repair (16, 35). In the fission yeast Schizosaccharomyces pombe, regulating the transition from G2 to mitosis (G2/M) represents the major DNA damage checkpoint and Crb2 is essential for this activity (4, 34). Crb2 is a member of a family of checkpoint regulators that have been termed mediators because they are thought to transmit the checkpoint signal from damage-sensing ATM/ATR-related kinases to effector kinases, such as Chk1, that trigger cell cycle arrest (11, 25). Crb2 is closely related to budding yeast Rad9 and mammalian p53 binding protein 53BP1, which all share two distinct domains, a tandem tudor motif and a pair of C-terminal BRCT repeats (Fig. (Fig.1A)1A) (11, 25). Besides 53BP1, Crb2 also shares some functional similarities with other mammalian BRCT-containing checkpoint regulators, such as MDC1 and BRCA1 (11, 25). In response to ionizing irradiation (IR), the rapid accumulation of Crb2 and other checkpoint proteins can be readily visualized as nuclear foci that mark sites of double-strand breaks (DSBs) (9, 25). Understanding the mechanisms that govern this targeting has been an area of intense interest, and for Crb2 this accumulation requires two distinct histone marks: dimethylation of histone H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX) (27, 36).Open in a separate windowFIG. 1.Crb2 pH2AX-binding mutations. (A) Top, schematic representation of Crb2 (not drawn to scale) with relevant mutations indicated. Bottom, protein sequence alignment of a portion of the BRCT phospho-binding motifs from Schizosaccharomyces pombe (sp) Crb2, human (h) 53BP1, human MDC1, and Saccharomyces cerevisiae (sc) Rad9. Identical residues are shaded black; similar residues are shaded gray. *, Crb2 phospho-binding residues. (B) The Crb2 BRCT domains specifically interact with pH2AX. Peptide pulldowns were performed as described in the text with C-terminal fission yeast H2A.1 peptides either unmodified or phosphorylated at Ser129 (see − or + pH2AX) and increasing amounts of the indicated recombinant Crb2 BRCT domain fragments (∼0.1 and 0.3 μM). After binding and washing, SDS-PAGE and Coomassie staining were used to visualize peptide-bound protein. A fraction of the total protein used for binding was also visualized (Input).Mono-, di-, and trimethyl H4K20 are conserved chromatin marks that are readily detectable in fission yeast and mammalian cells (29, 36). In fission yeast, the Kmt5 methylase catalyzes all three H4K20 methyl modifications and its inactivation, or mutation of its H4K20 substrate, severely diminishes Crb2 accumulation at DSBs and compromises checkpoint activity (10, 36). Note that as outlined by the unified nomenclature for the naming of histone lysine methyltransferases (2), the fission yeast H4K20 methylase previously known as Set9 (36) is now termed Kmt5. The requirement for H4K20 methylation is mediated by the tandem tudor domains of Crb2 that preferentially bind H4 tail peptides dimethylated at lysine 20 (3, 14). Tudor motif mutations impair Crb2 DSB targeting and genome integrity in a manner analogous to loss of Kmt5 activity, and dimethylation of H4K20, but not trimethylation, is required for Crb2 activity (10, 14, 42). The tudor domain of 53BP1 can also directly bind H4K20me2, and this recognition event is required for its accumulation at IR-induced DSBs (3, 23, 45).After DNA damage, serine 139 phosphorylation in the mammalian H2A variant H2AX, or a homologous site in canonical yeast H2A, specifically marks sites of genomic lesions (7, 12). The fission yeast genome encodes two H2A proteins, H2A.1 and H2A.2, which differ slightly in their primary amino acid sequence. Phosphorylation of S129 in H2A.1 and S128 in H2A.2 is collectively referred to as phosphorylated H2AX (pH2AX). The ATM/ATR family of PI3-like kinases that includes the fission yeast Rad3 and Tel1 enzymes catalyzes pH2AX (37). H2AX phosphorylation has a critical role in controlling both DNA repair and checkpoint activation in a variety of organisms from yeast to humans (7, 12). Central to its function is the ability of the pH2AX mark to coordinate the recruitment of a number of proteins to genomic lesions, and several factors can directly bind the modification (40). Serine-to-alanine substitutions at the H2AX phosphorylation site in fission yeast H2A (h2ax) severely reduce Crb2 accumulation at IR-induced DSBs and compromise the ability of cells to maintain checkpoint cell cycle arrest in a manner very similar to loss of H4K20 methylation (10, 27).The mechanism underlying the control of Crb2 DSB targeting and checkpoint activation by pH2AX is not understood. Because BRCT domains are known phospho-binding motifs (13), the initial demonstration that pH2AX is required for Crb2 function suggested that direct binding to the modification by Crb2 is critical for checkpoint activity (27). Supporting this idea, it has been demonstrated that the Crb2 BRCT repeats directly and specifically bind pH2AX peptides (22). Structural and biochemical studies have also identified a conserved pH2AX-binding motif in the BRCT repeats of Crb2, budding yeast Rad9, and human MDC1 and 53BP1 (Fig. (Fig.1A)1A) (15, 22, 39). As would be expected, mutation of Crb2''s critical phospho-binding motif impairs cell survival after DNA damage (22). Unexpectedly though, loss of its pH2AX-binding activity did not significantly affect the ability of Crb2 to localize to IR-induced DSBs (22). Rather, mutation of the Crb2 pH2AX-binding motif altered the kinetics of Rad22 accumulation at DSBs and triggered a prolonged checkpoint arrest after IR exposure (22). From these observations it was suggested that binding of the Crb2 BRCT repeats to pH2AX is critical for aspects of DNA repair but is not central to Crb2 targeting and checkpoint activity (22).The apparent dispensability of its pH2AX-binding motif in controlling Crb2 localization to IR-induced DSBs (22) was a surprising observation because of the established requirement for the pH2AX modification (10, 27). The extended checkpoint delay seen in Crb2 pH2AX-binding mutants (22) was also unexpected because h2ax cells cannot maintain checkpoint-mediated cell cycle arrest (10, 27). The prolonged checkpoint arrest was also surprising because a defect in IR-induced Chk1 phosphorylation was observed in the same Crb2 pH2AX-binding mutants (22). For these reasons we sought to reevaluate the requirement for the pH2AX-binding module of Crb2 in controlling DNA damage checkpoint activity. We demonstrate that the critical phospho-coordinating residue of Crb2 is required for binding to pH2AX peptides, Crb2 accumulation at IR-induced DSBs, cell survival after DNA damage, and maintenance of checkpoint-mediated cell cycle arrest. The observed impairments are similar to that reported for abolishment of pH2AX or mutation of the H4K20me2 binding tudor motif of Crb2. Strikingly, a combined ablation of the two modification binding modules of Crb2 produces an additive impairment in checkpoint dysfunction and genome integrity. These results argue that recognition of pH2AX by its BRCT repeats is critical for Crb2 accumulation at genomic lesions and its subsequent checkpoint activity. These observations also corroborate the independent findings of Sofueva et al. (38), who have observed a similar requirement for Crb2 binding to pH2AX in controlling DSB targeting and checkpoint activity.  相似文献   

19.
DNA damage causes checkpoint activation leading to cell cycle arrest and repair, during which the chromatin structure is disrupted. The mechanisms whereby chromatin structure and cell cycle progression are restored after DNA repair are largely unknown. We show that chromatin reassembly following double-strand break (DSB) repair requires the histone chaperone Asf1 and that absence of Asf1 causes cell death, as cells are unable to recover from the DNA damage checkpoint. We find that Asf1 contributes toward chromatin assembly after DSB repair by promoting acetylation of free histone H3 on lysine 56 (K56) via the histone acetyl transferase Rtt109. Mimicking acetylation of K56 bypasses the requirement for Asf1 for chromatin reassembly and checkpoint recovery, whereas mutations that prevent K56 acetylation block chromatin reassembly after repair. These results indicate that restoration of the chromatin following DSB repair is driven by acetylated H3 K56 and that this is a signal for the completion of repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号