首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Csn2 (Trip15/Cops2/Alien) encodes the second subunit of the COP9 signalosome (CSN), an eight-subunit heteromeric complex homologous to the lid subcomplex of the 26S proteasome. CSN is a regulator of SCF (Skp1-cullin-F-box protein)ubiquitin ligases, mostly through the enzymatic activity that deconjugates the ubiquitin-like protein Nedd8 from the SCF Cul1 component. In addition, CSN associates with protein kinase activities targeting p53, c-Jun, and IkappaB for phosphorylation. Csn2 also interacts with and regulates a subset of nuclear hormone receptors and is considered a novel corepressor. We report that targeted disruption of Csn2 in mice caused arrest of embryo development at the peri-implantation stage. Csn2(-/-) blastocysts failed to outgrow in culture and exhibited a cell proliferation defect in inner cell mass, accompanied by a slight decrease in Oct4. In addition, lack of Csn2 disrupted the CSN complex and resulted in a drastic increase in cyclin E, supporting a role for CSN in cooperating with the SCF-ubiquitin-proteasome system to regulate protein turnover. Furthermore, Csn2(-/-) embryos contained elevated levels of p53 and p21, which may contribute to premature cell cycle arrest of the mutant.  相似文献   

2.
The COP9 signalosome (CSN) is a conserved protein complex known to be involved in developmental processes of eukaryotic organisms. Genetic disruption of a CSN gene causes arrest during early embryonic development in mice. The Csn8 subunit is the smallest and the least conserved subunit, being absent from the CSN complex of several fungal species. Nevertheless, Csn8 is an integral component of the CSN complex in higher eukaryotes, where it is essential for life. By characterizing the mouse embryonic fibroblasts (MEFs) that express Csn8 at a low level, we found that Csn8 plays an important role in maintaining the proper duration of the G1 phase of the cell cycle. A decreased level of Csn8, either in Csn8 hypomorphic MEFs or following siRNA-mediated knockdown in HeLa cells, accelerated cell growth rate. Csn8 hypomorphic MEFs exhibited a shortened G1 duration and affected expression of G1 regulators. In contrast to Csn8, down-regulation of Csn5 impaired cell proliferation. Csn5 proteins were found both as a component of the CSN complex and outside of CSN (Csn5-f), and the amount of Csn5-f relative to CSN was increased in the Csn8 hypomorphic cells. We conclude that CSN harbors both positive and negative regulators of the cell cycle and therefore is poised to influence the fate of a cell at the crossroad of cell division, differentiation, and senescence.  相似文献   

3.
The COP9 signalosome (CSN) is a eukaryotic protein complex, which regulates a wide range of biological processes mainly through modulating the cullin ubiquitin E3 ligases in the ubiquitin-proteasome pathway. The CSN possesses a highly conserved deneddylase activity that centers at the JAMM motif of the Csn5 subunit but requires other subunits in a complex assembly. The classic CSN is composed of 8 subunits (Csn1-8), yet in several Ascomycota, the complex is smaller and lacks orthologs for a few CSN subunits, but nevertheless contains a conserved Csn5. This feature makes yeast a powerful model to determine the minimal assemblage required for deneddylation activity. Here we report, that Csi1, a diverged S. cerevisiae CSN subunit, displays significant homology with the carboxyl terminal domain of the canonical Csn6, but lacks the amino terminal MPN(-) domain. Through the comparative and experimental analyses of the budding yeast and the mammalian CSNs, we demonstrate that the MPN(-) domain of the canonical mouse Csn6 is not part of the CSN deneddylase core. We also show that the carboxyl domain of Csn6 has an indispensable role in maintaining the integrity of the CSN complex. The CSN complex assembled with the carboxyl fragment of Csn6, despite its lack of an MPN(-) domain, is fully active in deneddylation of cullins. We propose that the budding yeast Csi1 is a functional equivalent of the canonical Csn6, and thus the composition of the CSN across phyla is more conserved than hitherto appreciated.  相似文献   

4.
5.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation.  相似文献   

6.
The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.  相似文献   

7.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

8.
The COP9 signalosome (CSN), the lid subcomplex of the proteasome and translational initiation factor 3 (eIF3) share structural similarities and are often referred to as the PCI family of complexes. In multicellular eukaryotes, the CSN is highly conserved as an 8-subunit complex but in Saccharomyces cerevisiae the complex is rather divergent. We further characterize the composition and properties of the CSN in budding yeast and its interactions with these related complexes. Using the generalized profile method we identified CSN candidates, four with PCI domains: Csn9, Csn10, Pci8/Csn11, and Csn12, and one with an MPN domain, Csn5/Rri1. These proteins and an additional interactor, Csi1, were tested for pairwise interactions by yeast two-hybrid and were found to form a cluster surrounding Csn12. Csn5 and Csn12 cofractionate in a complexed form with an apparent molecular weight of roughly 250kDa. However, Csn5 migrates as a monomer in Deltacsn12 supporting the pivotal role of Csn12 in stabilizing the complex. Confocal fluorescence microscopy detects GFP-tagged Csn5 preferentially in the nucleus, whereas in absence of Csn12, Csn10, Pci8/Csn11, or Csi1, Csn5 is delocalized throughout the cell, indicating that multiple subunits are required for nuclear localization of Csn5. Two CSN subunits, Csn9 and Csi1, interact with the proteasome lid subunit Rpn5. Pci8/Csn11 has previously been shown to interact with eIF3. Together, these results point to a network of interactions between these three structurally similar, yet functionally diverse, complexes.  相似文献   

9.
Kim E  Yoon SJ  Kim EY  Kim Y  Lee HS  Kim KH  Lee KA 《PloS one》2011,6(10):e25870
The COP9 (constitutive photomorphogenic) signalosome (CSN), composed of eight subunits, is a highly conserved protein complex that regulates processes such as cell cycle progression and kinase signalling. Previously, we found the expression of the COP9 constitutive photomorphogenic homolog subunit 3 (CSN3) and subunit 5 (CSN5) changes as oocytes mature for the first time, and there is no report regarding roles of COP9 in the mammalian oocytes. Therefore, in the present study, we examined the effects of RNA interference (RNAi)-mediated transient knockdown of each subunit on the meiotic cell cycle in mice oocytes. Following knockdown of either CSN3 or CSN5, oocytes failed to complete meiosis I. These arrested oocytes exhibited a disrupted meiotic spindle and misarranged chromosomes. Moreover, down-regulation of each subunit disrupted the activity of maturation-promoting factor (MPF) and concurrently reduced degradation of the anaphase-promoting complex/cyclosome (APC/C) substrates Cyclin B1 and Securin. Our data suggest that the CSN3 and CSN5 are involved in oocyte meiosis by regulating degradation of Cyclin B1 and Securin via APC/C.  相似文献   

10.
11.
The COP9 signalosome is a highly conserved protein complex initially identified as a repressor of photomorphogenesis. Here, we report that subunit 6 of the Arabidopsis COP9 signalosome is encoded by a family of two genes (CSN6A and CSN6B) located on chromosomes V and IV, respectively. The CSN6A and CSN6B proteins share 87% amino acid identity and contain a MPR1p and PAD1p N-terminal (MPN) domain at the N-terminal region. The CSN6 proteins share homology with CSN5 and belong to the Mov34 superfamily of proteins. CSN6 proteins present only in the complex form and coimmunoprecipitate with other known subunits of the COP9 signalosome. Partial loss-of-function strains of the COP9 signalosome created by antisense and cosuppression with CSN6A exhibit diverse developmental defects, including homeotic organ transformation, symmetric body organization, and organ boundary definition. Protein blot analysis revealed that the defective plants accumulate significant amounts of ubiquitinated proteins, supporting the conclusion that the COP9 signalosome regulates multifaceted developmental processes through its involvement in ubiquitin/proteasome-mediated protein degradation.  相似文献   

12.
The Arabidopsis COP9 signalosome is a multisubunit repressor of photomorphogenesis that is conserved among eukaryotes. This complex may have a general role in development. As a step in dissecting the biochemical mode of action of the COP9 signalosome, we determined the sequence of proteins that copurify with this complex. Here we describe the association between components of the COP9 signalosome (CSN1, CSN7, and CSN8) and two subunits of eukaryotic translation initiation factor 3 (eIF3), eIF3e (p48, known also as INT-6) and eIF3c (p105). To obtain a biochemical marker for Arabidopsis eIF3, we cloned the Arabidopsis ortholog of the eIF3 subunit eIF3b (PRT1). eIF3e coimmunoprecipitated with CSN7, and eIF3c coimmunoprecipitated with eIF3e, eIF3b, CSN8, and CSN1. eIF3e directly interacted with CSN7 and eIF3c. However, eIF3e and eIF3b cofractionated by gel filtration chromatography in a complex that was larger than the COP9 signalosome. Whereas eIF3, as detected through eIF3b, localized solely to the cytoplasm, eIF3e, like CSN7, was also found in the nucleus. This suggests that eIF3e and eIF3c are probably components of multiple complexes and that eIF3e and eIF3c associate with subunits of the COP9 signalosome, even though they are not components of the COP9 signalosome core complex. This interaction may allow for translational control by the COP9 signalosome.  相似文献   

13.
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).  相似文献   

14.
The COP9 signalosome (CSN), an evolutionally highly conserved protein complex composed of 8 unique subunits (CSN1 through CSN8) in higher eukaryotes, is purported to modulate protein degradation mediated by the ubiquitin-proteasome system (UPS) but this has not been demonstrated in a critical mitotic parenchymal organ of vertebrates. Hepatocyte-specific knockout of the Cops8 gene (HS-Csn8KO) was shown to cause massive hepatocyte apoptosis and liver malfunction but the underlying mechanism remains unclear. Here, we report that Csn8/CSN exerts profound impacts on hepatic UPS function and is critical to the stability of the pro-apoptotic protein Bim. Significant decreases in CIS (cytokine-inducible Src homology 2 domain-containing protein), a Bim receptor of a cullin2-based ubiquitin ligase, were found to co-exist with a marked increase of Bim proteins. Csn8 deficiency also significantly decreased 19S proteasome subunit Rpt5 and markedly increased high molecular weight neddylated and ubiquitinated proteins. The use of a surrogate UPS substrate further reveals severe impairment of UPS-mediated proteolysis in HS-Csn8KO livers. Inclusion body-like materials were accumulated in Csn8 deficient hepatocytes. In addition to Bim, massive hepatocyte apoptosis in HS-Csn8KO livers is also associated with elevated expression of other members of the Bcl2 family, including pro-apoptotic Bax as well as anti-apoptotic Bcl2 and Bcl-XL. Increased interaction between Bcl2 and Bim, but not between Bcl2 and Bax, was detected. Hence, it is concluded that hepatic CSN8 deficiency impairs the UPS in the liver and the resultant Bim upregulation likely plays an important role in triggering hepatocyte apoptosis via sequestering Bcl2 away from Bax.  相似文献   

15.
The COP9 signalosome (CSN) is a complex of eight proteins first identified as a repressor of plant photomorphogenesis. A protein kinase activity associated with the COP9 signalosome has been reported but not identified; we present evidence for inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) as a protein kinase associated with the COP9 signalosome. We have shown that 5/6-kinase exists in a complex with the eight-component COP9 signalosome both when purified from bovine brain and when transfected into HEK 293 cells. 5/6-kinase phosphorylates the same substrates as those of the COP9 signalosome, including IkappaBalpha, p53, and c-Jun but fails to phosphorylate several other substrates, including c-Jun 1-79, which are not substrates for the COP9-associated kinase. Both the COP9 signalosome- associated kinase and 5/6-kinase are inhibited by curcumin. The association of 5/6-kinase with the COP9 signalosome is through an interaction with CSN1, which immunoprecipitates with 5/6-kinase. In addition, the inositol kinase activity of 5/6-kinase is inhibited when in a complex with CSN1. We propose that 5/6-kinase is the previously described COP9 signalosome-associated kinase.  相似文献   

16.
Yeast two-hybrid analysis (Fields and Song, 1989, Nature, 340:245-246) was used to screen a human heart library to isolate proteins interacting with the adult muscle-specific beta1D integrin but not with beta1A integrin. In addition to previously identified interactions (RACK 1(Liliental and Chang, 1998, Journal of Biological Chemistry, 273:2379-2383) and alpha-actinin (Otey et al., 1990, Journal of Cell Biology, 111:721-729), the authors isolated several novel candidates. These include subunit 3 (CSN3/Sgn3) of the COP9 signalosome complex, cyclins D1, D2, and D3, RanBPM, and a recently identified protein COG8/DOR1. These protein interactions were specific for beta1D integrin, as no binding to beta1A integrin cytoplasmic domain was measurable by two-hybrid analysis. This paper presents the initial characterization of the interaction of CSN3 with beta1D integrin, the localization of CSN3 and the other COP9 signalosome subunits in embryonic and adult cardiac myocytes and their response to muscle cell differentiation.  相似文献   

17.
Studies using lower organisms and cultured mammalian cells have revealed that the COP9 signalosome (CSN) has important roles in multiple cellular processes. Conditional gene targeting was recently used to study CSN function in murine T-cell development and activation. Using the Cre-loxP system, here we have achieved postnatal hepatocyte-restricted knockout of the csn8 gene (HR-Csn8KO) in mice. The protein abundance of other seven CSN subunits was differentially downregulated by HR-Csn8KO and the deneddylation of all cullins examined was significantly impaired. Moreover, HR-Csn8KO-induced massive hepatocyte apoptosis and evoked extensive reparative responses in the liver, including marked intralobular proliferation of biliary lineage cells and trans-differentiation and proliferation of the oval cells. However, division of pre-existing hepatocytes was significantly diminished in HR-Csn8KO livers. These findings indicate that Csn8 is essential to the ability of mature hepatocytes to proliferate effectively in response to hepatic injury. The histopathological examinations revealed striking hepatocytomegaly in Csn8-deficient livers. The hepatocyte nuclei were dramatically enlarged and pleomorphic with hyperchromasia and prominent nucleoli, consistent with dysplasia or preneoplastic cellular alteration in HR-Csn8KO mice at 6 weeks. Pericellular and perisinusoid fibrosis with distorted architecture was also evident at 6 weeks. It is concluded that CSN8/CSN is essential to postnatal hepatocyte survival and effective proliferation.  相似文献   

18.

Background  

The COP9/signalosome (CSN) is a highly conserved eight subunit complex that, by deneddylating cullins in cullin-based E3 ubiquitin ligases, regulates protein degradation. Although studied in model human cell lines such as HeLa, very little is known about the role of the CSN in haemopoietic cells.  相似文献   

19.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

20.
The COP9 complex (signalosome) is a known regulator of the proteasome/ubiquitin pathway. Furthermore it regulates the activity of the cullin-RING ligase (CRL) families of ubiquitin E3-complexes. Besides the CRL family, the anaphase-promoting complex (APC/C) is a major regulator of the cell cycle. To investigate a possible connection between both complexes we assessed interacting partners of COP9 using an in vivo protein-protein interaction assay. Hereby, we were able to show for the first time that CSN2, a subunit of the COP9 signalosome, interacts physically with APC/C. Furthermore, we detected a functional influence of the COP9 complex regarding the stability of several targets of the APC/C. Consistent with these data we showed a genetic instability of cells over-expressing CSN2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号