首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2Aperinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2Aadult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2Aadult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2Aadult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.  相似文献   

2.
Cell populations highly enriched in oligodendrocyte-type-2 astrocyte (O-2A) progenitors (so defined by their ability to bind the monoclonal antibodies LB1 and O4, and by the lack of expression of the differentiated glial markers galactocerebroside and glial fibrillary acidic protein (GFAP) were obtained from rat mixed cortical glial cultures. The O-2A progenitors were grown at low density (2 X 10(4) cells/cm2) in BME + 10% fetal calf serum (FCS) on a poly-L-lysine (PLL) substrate (controls) or on a substrate of purified type-1 astrocytes (AS) killed by air drying (K-AS), in order to analyze the effects of the interaction between the two cell types on the growth and differentiation of the immature O-2A cells, independently of the mitogenic soluble factors (e.g., platelet-derived growth factor; see Raff, 1989, Science 243, 1450-1455) secreted by type-1 AS. While on PLL most of the progenitors differentiated into GFAP+ type-2 AS within 1 week, on K-AS they largely differentiated into GalC+ oligodendrocytes (OL). On the latter substrate, however, the precursors achieved a higher density, due to higher proliferative activity. The additional observation, that when immature O-2A cells were seeded at high density (greater than 5 X 10(4) cells/cm2) on PLL their differentiation into OL was much more pronounced than in cultures of lower density, indicates that there is a close correlation between the density of immature O-2A cells and lineage decision, and that the increased OL differentiation of the immature O-2A cells on K-AS is at least partly related to the higher density achieved by the cells on this substrate. The enhanced proliferation of immature O-2A cells on K-AS did not appear to be related to platelet-derived growth factor or fibroblast growth factor remaining attached to the substrate, nor to known components of the extracellular matrix (ECM), such as heparan sulfate, chondroitin sulfate, laminin, or fibronectin, but was probably due to other components of a polypeptide nature present in the ECM produced by type-1 AS. A cell-free ECM was in fact almost as mitogenic as the K-AS substrate, and the mitogenic activities of both K-AS and AS-ECM were similarly inhibited by a set of enzymatic (pronase, trypsin) and physicochemical (heat, pH) treatments.  相似文献   

3.
O-2A progenitor cells are bipotential glial precursors that give rise to both oligodendrocytes and type-2 astrocytes on a precise schedule in the rat CNS. Studies in culture suggest that oligodendrocyte differentiation occurs constitutively, while type-2 astrocyte differentiation requires an exogenous inducer such as fetal calf serum. Here we describe a rat brain cell culture system in which type-2 astrocytes develop on schedule in the absence of exogenous inducers. Coincident with type-2-astrocyte development, the cultures produce an approximately 20 kd type-2-astrocyte-inducing factor(s). Purified cultures of type-1 astrocytes can produce a similar factor(s). Under conditions where they produce type-2-astrocyte-inducing factor(s), both brain and type-1 astrocyte cultures produce a factor(s) with ciliary neurotrophic (CNTF)-like activity. Purified CNTF, like the inducers from brain and type-1 astrocyte cultures, prematurely induces type-2 astrocyte differentiation in brain cultures. These findings suggest that type-2 astrocyte development is initiated by a CNTF-like protein produced by type-1 astrocytes.  相似文献   

4.
By studying the response of a well-defined progenitor cell to two well-defined mitogens, we have been able to provide a dramatic example of the complex relationship which can exist between the control of cell division and the control of differentiation.In previous studies we have described the development of the oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell, a glial progenitor cell isolated from the rat optic nerve. Although originally described as a bipotential cell, we have recently identified a new differentiation pathway in this lineage. We have found that O-2Aperinatal progenitors, with properties appropriate for early development, give rise to O-2Aadult progenitors, which have stem cell-like properties more appropriate to the physiological needs of adult animals. Our studies thus indicate that the population of O-2Aperinatal progenitors is tripotential, and also suggests a possible developmental origin for self-renewing stem cells. Moreover, the properties of O-2Aadult progenitor cells may provide a cellular biological basis for understanding the failure of remyelination in multiple sclerosis.The division of both O-2Aperinatal and O-2Aadult progenitors is stimulated by type-1 astrocytes (which are themselves derived from a separate glial lineage) but this cell-cell interaction promotes different programs of differentiation in the two progenitor populations. The effects of type-1 astrocytes on perinatal and adult progenitors appears to be mediated by platelet-derived growth factor (PDGF), and this mitogen will also induce different programs of differentiation in the two progenitor populations. Moreover, the patterns of differentiation promoted by PDGF are different from those promoted by fibroblast growth factor (FGF), demonstrating that the modulation of division can be distinguished from the modulation of differentiation.  相似文献   

5.
The expression of fibronectin and laminin by cultured glial cells was studied. The glial culture from neonatal mouse cerebra maintained in a chemically defined, serum-free medium consisted of type-1 astrocytes, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, oligodendrocytes and type-2 astrocytes. Double-labelling immunofluorescent experiments performed using the mixed glial culture indicated that fibronectin and laminin are expressed in different patterns among the glial subtypes. The staining intensities with anti-fibronectin or anti-laminin antibodies decreased in the order: type-1 astrocytes, O-2A progenitor cells and type-2 astrocytes. Both molecules were deposited in a fibrillar matrix underneath type-1 astrocytes, whereas only intracytoplasmic localization of these molecules was observed with O-2A progenitor cells and type-2 astrocytes. Western blot analysis showed that glial fibronectin has a slightly higher molecular weight than mouse plasma fibronectin (230 kDa) and that glial laminin is a variant with a 220 kDa B chain present and the 400 kDa A chain missing. Using enzyme-linked immunosorbent assays (ELISA), these molecules were detected in the glial extracellular matrix at the concentration of 4 ng/106 cells. A large amount of fibronectin (82 ng/106 cells) was secreted into the culture medium, while secretion of laminin was not detected.  相似文献   

6.
Identification of an adult-specific glial progenitor cell   总被引:18,自引:0,他引:18  
We have found that glial progenitor cells isolated from the optic nerves of adult rats are fundamentally different from their counterparts in perinatal animals. In our studies on bipotential oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, we have seen that O-2Aadult progenitor cells can be distinguished from O-2Aperinatal progenitors by their morphology and antigenic phenotype, their much longer cell cycle time (65 h versus 18 h), slower rate of migration rate (4 microns h-1 versus 21 microns h-1), and their time course of differentiation into oligodendrocytes or type-2 astrocytes in vitro (less than or equal to 3 days versus greater than 5 days). At least some of the differences between O-2Aadult and O-2Aperinatal progenitor cells appear to be clearly related to the differing cellular requirements of the adult and perinatal central nervous system (CNS). The properties of the O-2Aadult progenitor cells may make these cells ideally suited for the needs of the adult CNS, where rapid exponential increases in the number of oligodendrocytes and O-2A progenitor cells would be inappropriate. However, the properties of the O-2Aadult progenitor cells are such that they may not be able to replace oligodendrocytes in sufficient numbers to repair extensive or recurrent damage in the adult brain, such as in patients suffering from the human demyelinating disease multiple sclerosis. Moreover, available information about other tissues suggests that the transition from perinatal to adult progenitor cell types may represent a developmental mechanism of general importance.  相似文献   

7.
In rat optic nerve, oligodendrocytes and type-2 astrocytes develop from a common (O-2A) progenitor cell. The first oligodendrocytes differentiate at birth, while the first type-2 astrocytes differentiate in the second postnatal week. We previously showed that the timing of oligodendrocyte differentiation depends on an intrinsic clock in the O-2A progenitor cell. Here we provide evidence that the timing of type-2 astrocyte differentiation, by contrast, may depend on an inducing protein that appears late in the developing nerve. We show that extracts of 3- to 4-week-old, but not 1-week-old, rat optic nerve contain a protein (apparent Mr approximately 25,000) that induces O-2A progenitor cells in culture to express glial fibrillary acidic protein (GFAP), an astrocyte-specific marker in the rat central nervous system.  相似文献   

8.
M Noble  K Murray 《The EMBO journal》1984,3(10):2243-2247
Optic nerves of neonatal rats contain a bipotential glial progenitor cell which can be induced by tissue culture conditions to differentiate into either an oligodendrocyte (the myelin-forming cell of the CNS) or a type 2 astrocyte (an astrocyte population found only in the myelinated tracts of the CNS). In our previous studies most oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells differentiated within 3 days in vitro with relatively little division of the progenitors or their differentiated progeny. We have now found that the O-2A progenitors are stimulated to divide in culture by purified populations of type 1 astrocytes, another glial cell-type found in the rat optic nerve. This cell-cell interaction appears to be mediated by a soluble factor(s) and results in the production of large numbers of both progenitor cells and oligodendrocytes. As type 1 astrocytes are the major glial cell-type in the optic nerve when oligodendrocytes first begin to be produced in large numbers in vivo, our results suggest that this astrocyte subpopulation may play an important role in expanding the oligodendrocyte population during normal development.  相似文献   

9.
FGF modulates the PDGF-driven pathway of oligodendrocyte development   总被引:24,自引:0,他引:24  
PDGF promotes the growth of oligodendrocyte type-2 astrocyte (O-2A) glial progenitor cells and allows their timely differentiation into oligodendrocytes, the CNS myelin-forming cells. We demonstrate that basic FGF is a potent mitogen for brain O-2A progenitor cells, but blocks their differentiation into oligodendrocytes. Treatment with basic FGF also influences the level of expression of PDGF receptors on O-2A progenitor cells. These cells express only the alpha chain PDGF receptor, and the levels of PDGF alpha receptors decrease as the cells differentiate. In contrast, basic FGF maintains a high level of functionally responsive PDGF alpha receptors in O-2A progenitors. Thus basic FGF activates a signaling pathway that can positively regulate PDGF receptors in O-2A progenitor cells. In this way basic FGF or an FGF-like factor may modulate the production of myelin-forming cells in the CNS.  相似文献   

10.
We have studied the developmental appearance of the O-2A(adult) progenitor cell, a specific type of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell that we have identified previously in cultures prepared from the optic nerves of adult rats. O-2A(adult) progenitors differ from their counterparts in perinatal animals (O-2A perinatal progenitor cells) in antigenic phenotype, morphology, cell cycle time, rate of migration, time course of differentiation into oligodendrocytes or type-2 astrocytes and sensitivity to the lytic effects of complement in vitro. In the present study, we have found that O-2A(adult) progenitor-like cells first appear in the developing optic nerve approximately 7 days after birth and that by 1 month after birth these cells appear to be the dominant progenitor population in the nerve. However, the perinatal-to-adult transition in progenitor populations is a gradual one and O-2A(adult) and O-2A perinatal progenitors coexist in the optic nerve for 3 weeks or more. In addition, cells derived from optic nerves of P21 rats express characteristic features of O-2adult and O-2A perinatal progenitors for extended periods of growth in the same tissue culture dish. Our results thus indicate that the properties that distinguish these two types of O-2A progenitors from each other are expressed in apparently identical environments. Thus, these cells must either respond to different signals present in the environment, or must respond with markedly different behaviours to the binding of identical signalling molecules.  相似文献   

11.
L E Lillien  M C Raff 《Neuron》1990,4(4):525-534
Oligodendrocytes and type-2 astrocytes develop sequentially from O-2A progenitor cells in the rat CNS. We have reproduced this sequential development in a simplified, serum-free in vitro system: in cultures of newborn optic nerve cells treated with platelet-derived growth factor to maintain O-2A progenitor cell proliferation, progenitor cells differentiate into oligodendrocytes during the first week in vitro and into type-2 astrocytes during the second week. Thus all of the signals needed for type-2 astrocyte development are made by serum-free optic nerve cultures, indicating that neurons are not required. By manipulating the cellular composition of the cultures, we provide evidence that type-2 astrocyte development does not depend on oligodendrocytes, but instead requires non-O-2A lineage cells, which are also responsible for timing this development.  相似文献   

12.
O-2A progenitor cells give rise to both oligodendrocytes and type-2 astrocytes in vitro. Whereas oligodendrocyte differentiation occurs constitutively, type-2 astrocyte differentiation requires extracellular signals, one of which is thought to be ciliary neurotrophic factor (CNTF). CNTF, however, is insufficient by itself to induce the development of stable type-2 astrocytes. In this report we show the following: (a) that molecules associated with the extracellular matrix (ECM) cooperate with CNTF to induce stable type-2 astrocyte differentiation in serum-free cultures. The combination of CNTF and the ECM-associated molecules thus mimics the effect of FCS, which has been shown previously to induce stable type-2 astrocyte differentiation in vitro. (b) Both the ECM-associated molecules and CNTF act directly on O-2A progenitor cells and can induce them to differentiate prematurely into type-2 astrocytes. (c) ECM-associated molecules also inhibit oligodendrocyte differentiation, even in the absence of CNTF, but this inhibition is not sufficient on its own to induce type-2 astrocyte differentiation. (d) Whereas the effect of ECM on oligodendrocyte differentiation is mimicked by basic fibroblast growth factor (bFGF), the effect of ECM on type-2 astrocyte differentiation is not. (e) The ECM-associated molecules that are responsible for inhibiting oligodendrocyte differentiation and for cooperating with CNTF to induce type-2 astrocyte differentiation are made by non-glial cells in vitro. (f) Molecules that have these activities and bind to ECM are present in the optic nerve at the time type-2 astrocytes are thought to be developing.  相似文献   

13.
To test the specificity of N-acetylaspartate (NAA) as a neuronal marker for proton nuclear magnetic resonance (1H NMR) spectroscopy, purified and characterized cultured cells were analyzed for their NAA content using both 1H NMR and HPLC. Cell types studied included cerebellar granule neurons, type-1 astrocytes, meningeal cells, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, and oligodendrocytes. A high concentration of NAA was found in extracts of cerebellar granule neurons (approximately 12 nmol/mg of protein), whereas NAA remained undetectable in purified type-1 astrocytes, meningeal cells, and mature oligodendrocytes. However, twice the neuronal level of NAA was found in O-2A progenitors grown in vitro. In addition significant levels of NAA were also detected in cultures of immature oligodendrocytes. Our data partly support previous suggestions that NAA may be a useful neuronal marker for 1H NMR spectroscopic examination of the adult brain. However, they also raise the further possibility that alterations of NAA associated with some specific brain disorders, particularly disorders seen in newborn and young children, may reflect abnormalities in the development of oligodendroglia or their precursors.  相似文献   

14.
Oligodendrocytes are macroglial cells that synthesize and maintain myelin in the central nervous system. Oligodendrocytes in rodent brain are formed postnatally from glial progenitor cells. These progenitors cells are bipotential and differentiate in a later stage of development into type-2 astrocytes. Recent studies with cultured cells indicate that growth factors such as platelet-derived growth factor and ciliary neurotrophic factor are instrumental in the control of these events. This paper discusses various methods for the isolation of oligodendrocytes and for their maintenance in culture. We use cerebra or spinal cords from one-week old rat pups to prepare glial cultures that are enriched in oligodendrocytes (60-80% or greater than or equal to 90%, respectively). After one day in serum-containing medium the cells are kept in chemically-defined medium, supplemented with the hormones insulin, T3 and hydrocortisone. The activities of astrocyte-and oligodendrocyte-specific marker enzymes were measured to evaluate the influence of these hormones on the differentiation of the oligodendrocytes. Finally, glial energy metabolism and the utilization of ketone bodies and of fatty acids are discussed briefly.  相似文献   

15.
Astrocytes, ependymal cells, and oligodendrocytes have been shown to develop on the same schedule in dissociated cell cultures of early embryonic rat brain as in vivo. Subsequent studies showed that there are two major types of astrocyte (type-1 and type-2), which, in cultures of perinatal optic nerve, develop as two distinct lineages. In such cultures, type-2 astrocytes and oligodendrocytes develop from the same, bipotential, (O-2A) progenitor cells, which differentiate into type-2 astrocytes in 10% fetal calf serum (FCS) and into oligodendrocytes in less than or equal to 0.5% FCS. In light of these findings, we now have extended our studies on macroglial cell development in rat brain and show the following: (i) The first astrocytes to develop have a type-1 phenotype, while astrocytes with a type-2 phenotype do not develop until almost 2 weeks later, just as in the optic nerve. (ii) Most importantly, type-2 astrocytes, like the other macroglial cells, develop on the same schedule in cultures of early embryonic (less than or equal to E15) brain as they do in vivo. (iii) By contrast, both oligodendrocytes and type-2 astrocytes develop prematurely in cultures of E17 brain, and FCS influences this development in the same way it does in perinatal optic nerve cultures. (iv) Type-2 astrocyte precursors are labeled by the A2B5 monoclonal antibody, as shown previously for oligodendrocyte precursors in brain and for O-2A progenitor cells in optic nerve. Taken together with our previous findings, these results suggest that oligodendrocytes and type-2 astrocytes in brain develop from bipotential O-2A progenitor cells, whose choice of developmental pathway and timing of differentiation depend on mechanisms that operate independently of brain morphogenesis.  相似文献   

16.
Primary telencephalic cultures derived from neonatal Wistar Furth rats were able to support the growth of coronavirus JHM if a viable neuronal population was maintained. This occurred under serum-free defined, but not serum-supplemented, growth conditions. The importance of neurons in establishing infections in mixed cultures was confirmed by immunocytochemical and electron microscopic studies. Glia, although more abundant than neurons in these cultures, were less frequently infected during the initial 48 h postinoculation. The two glial lineages present in mixed telencephalic cultures were separated into type-1 astrocytes and oligodendrocyte-type-2 astrocyte (O-2A) lineage cells and individually assessed for their ability to support virus growth. Infection could not be established in type-1 astrocytes regardless of the culture conditions employed, consistent with our previous study (S. Beushausen and S. Dales, Virology 141:89-101, 1985). In contrast, infections could be initiated in selected O-2A lineage cells grown in serum-free medium. Virus multiplication was however significantly reduced by preconditioning the medium with mixed telencephalic or enriched type-1 astrocyte cultures, suggesting that intercellular interactions mediated by soluble factor(s) can influence the infectious process in O-2A lineage cells. This presumption was supported by eliciting similar effects with basic fibroblast growth factor and platelet-derived growth factor, two central nervous system cytokines known to control O-2A differentiation. The presence of these cytokines, which synergistically block O-2A cells from differentiating into oligodendrocytes was correlated with specific and reversible resistance to JHM virus (JHMV) infection. These data, combined with our finding that accelerated terminal differentiation of the oligodendrocyte phenotype confers resistance to JHMV (Beushausen and Dales, Virology, 1985), suggest that the permissiveness of O-2A cells for JHMV is restricted to a discrete developmental stage.  相似文献   

17.
S Temple  M C Raff 《Cell》1986,44(5):773-779
The clonal development of oligodendrocytes was studied by culturing individual oligodendrocyte--type-2 astrocyte (O-2A) progenitor cells on monolayers of type-1 astrocytes, which stimulate O-2A progenitor cells to divide. Oligodendrocytes developed by a proliferative lineage in which clonal progeny differentiated together after a number of cell divisions. Most O-2A progenitor cells had similar cell cycle times (1-2 days), but their proliferative capacity varied greatly: some divided only once while others divided up to eight times before differentiating. sister cells behaved similarly when recultured separately on astrocyte monolayers. These findings are consistent with the cell-division-counting hypothesis previously proposed to explain the timing of oligodendrocyte differentiation. They also unambiguously establish the phenotype of O-2A progenitor cells in vitro and demonstrate that these cells respond directly to growth factors produced by type-1 astrocyte monolayers.  相似文献   

18.
The effects of X irradiation on oligodendrocyte-type-2-astrocyte (O-2A) progenitor cells derived from different regions of the perinatal central nervous system (CNS) of rats were investigated in vitro. The O-2A progenitor cells can differentiate into either oligodendrocytes or type-2 astrocytes. The depletion of these cells could lead to demyelination, seen as a delayed reaction after irradiation of the CNS in vivo. To quantify cell survival, O-2A progenitor cells were grown on monolayers of type-1 astrocytes. Monolayers of type-1 astrocytes stimulate O-2A progenitor cells to divide. O-2A progenitor cells were irradiated in vitro and clonogenic cell survival was measured. The O-2A progenitor cells derived from perinatal optic nerve were quite radiosensitive in contrast to O-2A progenitor cells derived from perinatal spinal cord and perinatal corpus callosum. Furthermore, O-2A progenitor cells derived from the optic nerve formed smaller colonies, with most colonies showing early differentiation into oligodendrocytes. In contrast, more than half of the colonies derived from corpus callosum did not show any differentiation after 2 weeks in vitro and kept growing. These differences support the view that perinatal O-2A progenitor cells derived from the optic nerve are committed progenitor cells while the O-2A progenitor cells derived from the perinatal corpus callosum and the perinatal spinal cord have more stem cell properties.  相似文献   

19.
It has been shown previously that cultures of rat optic nerve contain three types of macroglial cells--oligodendrocytes and two types of astrocytes. Type-1 astrocytes develop from their own precursor cells beginning before birth, while oligodendrocytes and type-2 astrocytes develop postnatally from a common bipotential precursor called the O-2A progenitor cell. Proliferating O-2A progenitor cells give rise to postmitotic oligodendrocytes beginning around birth, and to type-2 astrocytes beginning in the second postnatal week. Studies in vitro have suggested that platelet-derived growth factor (PDGF), secreted by type-1 astrocytes, plays an important part in timing oligodendrocyte development: PDGF seems to keep O-2A progenitor cells proliferating until an intrinsic clock in the progenitor cells initiates the process leading to oligodendrocyte differentiation. The clock apparently determines when a progenitor cell becomes unresponsive to PDGF, at which point the cell stops dividing and, as a consequence, automatically differentiates into an oligodendrocyte. Here we have used radiolabelled PDGF to show that O-2A progenitor cells have PDGF receptors, suggesting that these cells respond directly to PDGF. The receptors resemble the type A PDGF receptor previously described on human fibroblasts and are initially retained when progenitor cells stop dividing and develop in vitro into oligodendrocytes. The latter finding indicates that receptor loss is not the reason that progenitor cells initially become mitotically unresponsive to PDGF.  相似文献   

20.
Ju PJ  Liu R  Yang HJ  Xia YY  Feng ZW 《Cytotherapy》2012,14(5):608-620
Background aimsThe widespread NG2-expressing neural progenitors in the central nervous system (CNS) are considered to be multifunctional cells with lineage plasticity, thereby possessing the potential for treating CNS diseases. Their lineages and functional characteristics have not been completely unraveled. The present study aimed to disclose the lineage potential of clonal NG2+ populations in vitro and in vivo.MethodsTwenty-four clones from embryonic cerebral cortex-derived NG2+ cells were induced for oligodendrocyte, astrocyte, neuronal and chondrocyte differentiation. The expression profiles of neural progenitor markers chondroitin sulfate proteoglycan 4 (NG2), platelet-derived growth factor-α receptor (PDGFαR); nestin and neuronal cell surface antigen (A2B5) were subsequently sorted on cells with distinct differentiation capacity. Transplantation of these NG2+ clones into the spinal cord was used to examine their lineage potential in vivo.ResultsIn vitro differentiation analysis revealed that all the clones could differentiate into oligodendrocytes, and seven of them were bipotent (oligodendrocytes and astrocytes). Amazingly, one clone exhibited a multipotent capacity of differentiating into not only neuronal–glial lineages but also chondrocytes. These distinct subtypes were further found to exhibit phenotypic heterogeneity based on the examination of a spectrum of neural progenitor markers. Transplanted clones survived, migrated extensively and differentiated into oligodendrocytes, astrocytes or even neurons to integrate with the host spinal cord environmentConclusionsThese results suggest that NG2+ cells contain heterogeneous progenitors with distinct differentiation capacities, and the immortalized clonal NG2+ cell lines might provide a cell source for treating spinal cord disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号