首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Natural and human‐induced differences in frugivore assemblages can influence the seed dispersal distances of trees. An important issue in seed dispersal systems is to understand whether differences in seed dispersal distances also affect the genetic structure of mature trees. One possible approach to test for a relationship between seed dispersal and the genetic structure of mature trees is to compare the genetic structure of two closely related tree species between two biogeographical regions that differ in frugivore assemblages and seed dispersal distances. Previous studies on two Commiphora species revealed that Commiphora guillauminii in Madagascar has a much lower seed dispersal distance than Commiphora harveyi in South Africa. We tested whether the lower seed dispersal distance might have caused decreased gene flow, resulting in a stronger genetic structure in Madagascar than in South Africa. Location Madagascar and South Africa. Methods Using amplified fragment length polymorphism markers we investigated the genetic structure of 134 trees in Madagascar and 158 trees in South Africa at a local and a regional spatial scale. Results In concordance with our hypothesis, kinship analysis suggests that gene flow was restricted mostly to 3 km in Madagascar and to 30 km in South Africa. At the local spatial scale, the genetic differentiation among groups of trees within sample sites was marginally significantly higher in Madagascar (FST = 0.069) than in South Africa (FST = 0.021). However, at a regional spatial scale genetic differentiation was lower in Madagascar (FST = 0.053) than in South Africa (FST = 0.163). Main conclusions Our results show that lower seed dispersal distances of trees were linked to higher genetic differentiation of trees only at a local spatial scale. This suggests that seed dispersal affects the genetic population structure of trees at a local, but not at a regional, spatial scale.  相似文献   

2.
Schinus molle (Peruvian pepper tree) was introduced to South Africa more than 150 years ago and was widely planted, mainly along roads. Only in the last two decades has the species become naturalized and invasive in some parts of its new range, notably in semi‐arid savannas. Research is being undertaken to predict its potential for further invasion in South Africa. We studied production, dispersal and predation of seeds, seed banks, and seedling establishment in relation to land uses at three sites, namely ungrazed savanna once used as a military training ground; a savanna grazed by native game; and an ungrazed mine dump. We found that seed production and seed rain density of S. molle varied greatly between study sites, but was high at all sites (384 864–1 233 690 seeds per tree per year; 3877–9477 seeds per square metre per year). We found seeds dispersed to distances of up to 320 m from female trees, and most seeds were deposited within 50 m of putative source trees. Annual seed rain density below canopies of Acacia tortillis, the dominant native tree at all sites, was significantly lower in grazed savanna. The quality of seed rain was much reduced by endophagous predators. Seed survival in the soil was low, with no survival recorded beyond 1 year. Propagule pressure to drive the rate of recruitment: densities of seedlings and sapling densities were higher in ungrazed savanna and the ungrazed mine dump than in grazed savanna, as reflected by large numbers of young individuals, but adult : seedling ratios did not differ between savanna sites. Frequent and abundant seed production, together with effective dispersal of viable S. molle seed by birds to suitable establishment sites below trees of other species to overcome predation effects, facilitates invasion. Disturbance enhances invasion, probably by reducing competition from native plants.  相似文献   

3.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

4.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

5.
Henry F. Howe 《Oecologia》1989,79(3):417-426
Summary Fruit-eating animals deposit viable seeds in patterns that determine the conditions under which seeds and seedlings live or die. Many tree species are scatter-dispersed by birds, bats, or other small frugivores that regurgitate, defecate, or drop seeds singly or in pairs. These scatterdispersed plant species normally recruit as isolated individuals, and are unlikely to evolve exceptional resistance to herbivores, pathogens, or to other sources of density-dependent seed or seedling mortality. Other tree species are clump-dispersed by larger terrestrial or arboreal frugivores that defecate seeds in masses which produce bouquets of seedlings. Because their seeds invariably germinate in close proximity to other seedlings, clump-dispersed species necessarily evolve chemical or mechanical defenses against seed predators, pathogens, and herbivores that act in a densitydependent manner.Population and genetic attributes should reflect this basic dichotomy in the conditions of seedling recruitment. I predict that seedlings of scatter-dispersed species rarely survive near parents or in dense aggregations under frugivore roosts. Seed dispersal should be mandatory, often to light gaps or other special habitats. Outbred adults and juveniles are expected to exist at low densities in loose aggregations or random distributions. Seedlings of clump-dispersed trees are pre-adapted for survival in dense aggregations near parents, as well as in fecal clumps. Substantial recruitment of juveniles and young adults should occur from undispersed seeds under and near parent trees. Such species should be common, highly aggregated, and show strong genetic family structure. Because recruitment requires dispersal, scatter-dispersed plant species should be especially vulnerable to loss of dispersal agents. Because offspring consistently recruit near parents, clump-dispersed plants should be less vulnerable to temporary loss of dispersal agents.  相似文献   

6.
Post‐logging seedling regeneration density by big‐leaf mahogany (Swietenia macrophylla), a nonpioneer light‐demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the forest floor through germination and the first seedling growing season in southeastern Amazonia, Brazil. Fruit production rates were low by three logged and one unlogged populations compared to reports from other regions. Commercial‐sized trees (>60 cm diameter) were more fecund than noncommercial trees (30–60 cm diameter) at two sites, averaging 14.5 vs. 3.9 fruits/tree/year, respectively, at Marajoara, a logged site, over 8 yr. Fruit capsules contained an average of 60.3 seeds/fruit, 70 percent of which appeared viable by visual inspection. Sixty‐seven to 72 percent of apparently viable seeds germinated in nursery beds 2.5 mo after the dispersal period, when wet season rains began. Dry season winds blew most seeds west‐northwest of parent trees, with median dispersal distances of 28 and 9 m on west and east sides of parent trees, respectively. Nearly 100 percent of seeds fell within an area of 0.91 ha. On the forest floor beneath closed canopies, mammals, invertebrates, and fungal pathogens killed 40 percent of apparently viable seeds, while 36 percent germinated. Nine months after seedling establishment—midway through the first logging season following seed dispersal—14 percent of outplanted seeds survived as seedlings, representing 5.8 seeds/fruit. We conclude that seedlings are likely to survive in logging gaps at appreciable densities only in rare cases where previous year fruit production rates by logged trees were high (4–12.5% of commercial‐sized trees/year at Marajoara) and where tree crowns were felled in west or northwest directions.  相似文献   

7.
The effects of dispersal pattern (seeds in small clumps vs. seeds scattered in pairs) and distance to the nearest Carapa procera (Meliaceae; a tree that produces seeds preferred by terrestrial vertebrates) on survival of seeds and seedlings were examined for the animal–dispersed tree species Virola michelii (Myristicaceae) in a mature forest‘at Paracou, French Guiana, in 1992 and 1993. We assessed the putative role of ground–dwelling mammalian herbivores, rodents, and ungulates that filter the seed shadow, acting either as dispersers or predators and thus modifying the original pattern of seed dispersal made by frugivores. We measured the effects of simulated seed burial by rodents using marked seeds and quantified the effect of protecting seeds and seedlings from ground–dwelling vertebrates on seedling germination and survival with fence exclosures in 1992. Dispersal pattern had short–term but no long–term effects on the proportion of V. michelii seeds that survived one year later as seedlings. In the short term, within six weeks, clumped seeds survived better than scattered seeds in both years. Marked seeds that were removed from their site of dispersal were eaten; rodents only rarely buried seeds of V. michelii, and seed burial reduced seed and seedling survivorship. The combined effect of the factors year and Carapa proximity significantly affected seed survival within six weeks. Although six–week seed survival was greater in 1993 than in 1992, seedling establishment was lower in 1993 than in 1992 following a lower rainfall regime during the key period of seed germination (February). One–year seed and seedling survivorship was similar between treatments and years. Seed survival and seedling establishment in V. michelii was dependent on vertebrates in the short term and on climate in the long term. Overall, seed and seedling survivorship depended on a combination of these factors.  相似文献   

8.
Hampe A 《Oecologia》2008,156(1):137-145
Vertebrate frugivore communities are easily satiated by abundant fruit supplies and, contrary to abiotic dispersal agents, typically disperse only part of the available seed pool. This frugivore satiation is likely to be a widespread phenomenon and should be an influential predictor of plants’ ability to disperse their offspring to suitable establishment sites; yet it has never been systematically quantified. Here I investigate patterns of fruit abundance, frugivore activity and frugivore satiation, and their consequences for seed dispersal in the fleshy-fruited tree Frangula alnus. Based on constant-effort seed trapping conducted over 3 years, I assess densities of total and frugivore-consumed seedfall across two spatial (within/between populations) and two temporal (within/between ripening seasons) scales. Furthermore, I examine relationships between fruit abundance and the amount of seeds that are actually dispersed away from fruiting trees. Frugivore activity tightly matched fruit abundance, although some differences existed between scales. This marked fruit tracking did not prevent a significant frugivore satiation, however, and only 53% of the available fruit crops were actually consumed. The extent of satiation varied most at the within-population level, likely due to the territorial behaviour of important frugivore species. In contrast, levels of satiation remained remarkably invariable through time, suggesting that frugivores behave as opportunists and closely adjust the composition of their diet to the available food supply. Overall, greater fruit abundance resulted in a higher proportion of seeds falling beneath fruiting trees, but it also helped increase the (absolute) number of seeds dispersed. This study shows that frugivore satiation can be an important phenomenon even when frugivores tightly track fruit abundance. Its negative effects on recruitment may be attenuated, however, if greater fruit crops help increase population-wide frugivore activity and the amount of seeds being dispersed to suitable establishment sites.  相似文献   

9.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

10.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

11.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

12.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

13.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

14.
We examined frugivore visitation and seed dispersal of five large-seeded (≥ 5 mm) tree species in tropical montane forest based on their occurrence in frugivorous primate diets: Ekebergia capensis, Olea capensis, Parinari excelsa, Prunus africana , and Syzygium guineense. A total of 21 frugivores in five assemblages ( i.e. , chimpanzees, cercopithecines, large-bodied birds, small-bodied birds, and squirrels) were observed over the study period (August 2006 and October–April 2007). We observed seed dispersal in four of five tree species studied; no dispersal was observed for P. excelsa . Frugivore assemblages did not visit tree species equally. Primates spent the most time in trees and had the largest group size. Large-bodied birds (LB) and chimpanzees dispersed the highest number of seeds per minute. LB and cercopithecines potentially dispersed the greatest number of seeds for E. capensis , and chimpanzees for S. guineense . Our analyses indicated that the mean fruiting duration of the focal tree, time in the tree, and number of species present are important predictor variables for seed dispersal by small- and large-bodied birds, and cercopithecines. The number of fruiting trees in the immediate vicinity of the focal tree further predicted seed dispersal for small-bodied birds (SB). Large-bodied birdseed dispersal also was predicted by time in tree by SB, and the number of individuals for SB and cercopithecines. Cercopithecines (CS) were further explained by the time in tree and number of species (SB & LB), and number of individuals for CS. Our study highlights the complexity of describing the relative importance of a frugivore assemblage to the dispersal of a tree species seeds.  相似文献   

15.
Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.  相似文献   

16.
Daniel G. Wenny 《Biotropica》2000,32(2):327-337
Dispersal quality, as estimated by the cumulative effects of dispersal, germination, seed predation, and seedling survival, was examined for Beilschmiedia pendula (Lauraceae) in Monteverde, Costa Rica. I determined the pattern of dispersal by finding seeds deposited by birds, protected the seeds from seed predators with cages to assess germination and seedling survival, and examined seed predation rates with marked seeds. Seed predation, germination, and seedling survival were compared between seeds naturally dispersed by birds and seeds placed at randomly located sites. Approximately 70 percent of seeds dispersed by birds (N= 244) were deposited <10 m from crown edges of fruiting B. pendula trees, although some seeds were dispersed at least 70 m away. Larger seeds were more likely to be dispersed under or close to the parent trees, and larger seeds produced larger seedlings. Seed size was not correlated directly with seedling survival, but larger seedlings at three months were most likely to survive one year. Seed predation by mammals and insects and seedling mortality due to fungal pathogens were concentrated beneath the crowns of parent trees. Seedlings and saplings were more abundant beneath fruiting B. pendula trees, but individuals farther away were taller on average. Thus, dispersal is beneficial for B. pendula, but such benefits appear most pronounced at a small spatial scale; seeds dispersed >30 m from the crown edges actually had a lower probability of survival than those dispersed 10–20 m. Only 10 percent of B. pendula. seeds received high‐quality dispersal in terms of landing in the zone with the highest per seed probability of seedling survival 10–20 m from parental crowns.  相似文献   

17.
Forest fragmentation, reduced forest cover, and hunting pressure are the main threats affecting animal‐mediated seed dispersal. However, their combined effects on seed dispersal rates have been simultaneously investigated only rarely, and never in Africa. We aimed to disentangle the effects of forest cover, hunting pressure, frugivore abundance, and fruit availability at the local and landscape scales on the seed dispersal rates of Staudtia kamerunensis (Myristicaceae). To estimate the percentages of seed dispersal failure (undispersed seeds), we quantitated fruit remains below fruiting trees distributed across five contrasting sites in a semi‐natural forest‐savanna mosaic in the Democratic Republic of Congo. We used statistical analyses accounting for spatial autocorrelation and found that forest cover in the surrounding landscape, hunting level, the associated abundance of dispersers, and fruit availability all had significant effects on the percentage of seed dispersal failure. The combination of high fruit availability and reduced abundance of seed dispersers could accelerate seed disperser satiation, causing the seed dispersal system to be saturated. Our study highlights how two major factors associated with anthropogenic activities, forest cover and hunting, affect seed dispersal by animals. These findings could have far‐reaching implications for our understanding of tree‐frugivore interactions and the conservation of tropical communities.  相似文献   

18.
Werger  Marinus J. 《Plant Ecology》1998,134(2):243-248
We determined the role of bird dispersal in seed and seedling dynamics of the tree Kalopanax pictus from 7 years of observing seed rain and seedling emergence in a broad-leaved deciduous forest in central Japan. We also performed an experiment on the influence of seed pulp on germination of seeds of K. pictus. Seeds of this species can lie dormant for several years, and this causes rather constant yearly seedling emergence in spite of irregular seed production. The spatial distribution of the seedlings that emerged each year (maximum distance from nearest conspecific seed-bearing tree of 90 m) was wider than that of gravity-dispersed seeds (max. distance of 37 m), suggesting seed dispersal by birds in winter. Emerged seedling densities at sites over 20 m from the nearest conspecific seed-bearing tree were highest in the spring of 1991, about half a year after the largest seed fall of the observation period. However, emerged seedling densities within 20 m from seed-bearing trees were highest in 1992, 1.5 years after the largest seed fall. These field observations may be explained by the experimental results on the effects of seed pulp on germination. Intact seeds germinate slowly at low germination rates, while seeds without seed pulp germinate quickly at high germination rates. Fallen seeds with seed pulp thus appear to form a seed bank near seed sources (temporal dispersal), while seeds scattered by birds appear to increase the possibility of reaching the present safe sites in distant areas with quick germination (spatial dispersal).  相似文献   

19.
Howe  Henry F. 《Plant Ecology》1993,107(1):149-162
This paper explores the causes and consequences of seed and seedling mortality of the tree Virola nobilis (Myristicaceae) Central Panama in order to understand the advantage to local seed dispersal by birds and monkeys. Post-dispersal mortality due to insects (primarily Conotrachelus spp., Curculionidae) accounts for 30–35% of seed and seedling death during the first 12 weeks after seed fall. Because more seeds and seedlings are killed under and near fruiting trees than 15–45 m away, seed dispersal confers a 20–40 fold advantage on seeds carried 45 m from fruiting adults. In contrast, >60% of seed and seedling death during the first year is due to seed predation by mammals, with >90% due to mammals among the <2% seeds that survive until maternal endosperm is exhausted ±12 weeks after seed fall. Mortaliy due to mammals is independent of distance from parent trees, confering no advantage to seed dispersal. Insects account for variation in mortality attributable to distance effects, mammals to between site effects.Early weevil infestations put a premium on seed removal by large birds (Ramphastos swainsonii, R. sulfuratus, Penelope purpurascens), which carry >50% of the seeds that they eat >40 m, as compared with smaller birds (Baryphthengus martii, Tityra semifasciata, Trogon massena) and monkeys (Ateles geoffroyi), which leave most or all of the seeds that they eat under or near the tree crown.  相似文献   

20.
In order to assess the importance of seed dispersal (escape and colonization hypotheses), I used transplant experiments for seeds and seedlings of 5–11 plant species with fleshy fruits in a lowland tropical forest (Tinigua National Park, Colombia). I controlled seed density, distance to parental tree, and habitat type. I monitored seed removal, seedling survival, and seedling growth during the first year of development for an average of 554 seeds and 169 seedlings for each species. I supplemented the experimental results with measurements of natural recruitment. I found little support for the escape hypothesis during the seed and seedling stages. For six species that showed differences in seed removal associated with distance, five showed highest removal away from, than close to parent trees, suggesting predator satiation. Seedling survival during the first year was not consistently associated with low densities and long distances from parent trees. For the majority of species, seedlings did not survive flooding in low basins, and there was growth advantage for most plant species in canopy gaps. These differences imply advantages for seed dispersal to adequate habitats, as predicted by the colonization hypothesis. In contrast to experiments, strong negative distance-dependent effects were evident when analyzing natural recruitment patterns. The ratio between saplings and seedlings was higher away from parent trees for the species with enough recruitment to be analyzed and this suggests that a negative distance-dependent effect may also occur after seedling establishment. This pattern is suspected for several other species, but an analysis with some of the other most common trees showed a variety of negative, neutral, and positive distance dependent effects. This study emphasizes the importance of long-term studies to asses the role of seed dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号