首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The myenteric plexus of the domestic fowl (Gallus domesticus) small intestine was studied by means of silver staining, glyoxylic acid-induced fluorescence, the modified Koelle-Friedenwald method for the detection of acetylcholinesterase, NADH-diaphorase techniques and the unlabelled antibody method involving the use of an antiserum raised against GABA conjugated by glutaraldehyde to bovine serum albumin. The majority of the perikarya were in the ganglia, with an average density of 3370 +/- 942 nerve cells/cm2. Cholinesterase-positive and a few GABA-immunoreactive nerve cell bodies were seen in the myenteric ganglia, while fluorescent ganglion cells were not observed. In addition to AChE and GABA-positive nerve fibres, a rich fluorescent network of varicose and nonvaricose nerve fibres was detected, pointing to the presence of an extrinsic aminergic system in the domestic fowl myenteric plexus. Electron microscopic observations on nerve cells, axon profiles and varicosites with various vesicle populations were in good agreement with the histochemical findings.  相似文献   

2.
Axons in the duodenum, ileum and rectum of the domestic fowl were identified as catecholamine-containing (CA) on the basis of positive reactivity following chromaffin fixation for electron microscopy. CA-axons in association with blood vessels in all regions of the intestine and in non-vascular sites in the small intestine had a 'typical' adrenergic appearance, in that they contained many small granular vesicles (SGV) and variable numbers of large granular vesicles (LGV). In the rectum the non-vascular CA-axon profiles were atypical, in that there were many elongated LGV and few SGV, and the chromaffin reactivity was weak. The nerve profiles in the rectum were dramatically reduced following 6-hydroxydopamine and reserpine treatment and were absent in rectum cultured in the absence of extrinsic ganglia. It was concluded that the profiles, in spite of their low chromaffin reactivity, truely represent CA-axons. The possibility was raised that the atypical morphology and reduced chromaffin reactivity is due to the presence of adrenaline.  相似文献   

3.
Interactions between cationic and neutral amino acids in transport across the brush-border membrane, Jmc, of the small intestine have been examined using preparations from the distal rabbit ileum and the rat and guinea-pig mid-small intestine. (1) In the guinea pig, the dependence of Jmc Lys on the concentration of lysine is best described in terms of two saturable transport mechanism in addition to free diffusion. (2) It is shown that the discrepancy between cis-effects of low concentrations of neutral amino acids on the Jmc of cationic amino acids, cis-stimulation in the guinea pig contra cis-inhibition in the rabbit and rat, represents species differences. In the guinea pig, imposing sodium-free conditions turns cis-stimulation into cis-inhibition. (3) It is demonstrated that in rat and guinea pig, leucine is transported both by the transport system(s) for cationic amino acids and by transport system(s) which cannot be inhibited by cationic amino acids.  相似文献   

4.
Active transport of D-mannose in the small intestine   总被引:1,自引:0,他引:1  
T Z Csáky 《Life sciences》1966,5(11):1025-1030
  相似文献   

5.
6.
Myo-inositol transport in Aerobacter aerogenes   总被引:3,自引:0,他引:3  
  相似文献   

7.
D-xylose active transport in the hamster small intestine   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
The unidirectional transport of [3H]myo-inositol across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured using an in situ rat brain perfusion technique. Myo-inositol was transported across the blood-brain barrier by a low capacity, saturable system with a one-half saturation concentration of 0.1 mM. The permeability surface-area product was 6.2×10–5S–1 with a myo-inositol concentration of 0.02 mM in the perfusate. The myo-inositol stereoisomer scyllo-inositol but not (+)-chiro-inositol (both 1 mM) inhibited myo-inositol transfer through the blood-brain barrier. These observations provide evidence that myo-inositol is transferred through the blood-brain barrier by simple diffusion and a stereospecific, saturable transport system.  相似文献   

10.
11.
Myo-inositol transport in Saccharomyces cerevisiae.   总被引:4,自引:3,他引:4       下载免费PDF全文
myo-Inositol uptake in Saccharomyces cerevisiae was dependent on temperature, time, and substrate concentration. The transport obeyed saturation kinetics with an apparent Km for myo-inositol of 0.1 mM, myo-Inositol analogs, such as scyllo-inositol, 2-inosose, mannitol, and 1,2-cyclohexanediol, had no effect on myo-inositol uptake, myo-Inositol uptake required metabolic energy. Removal of D-glucose resulted in a loss of activity, and azide and cyanide ions were inhibitory. In the presence of D-glucose, myo-inositol was accumulated in the cells against a concentration gradient. A myo-inositol transport mutant was isolated from UV-mutagenized S. cerevisiae cells using the replica-printing technique. The defect in myo-inositol uptake was due to a single nuclear gene mutation. The activities of L-serine and D-glucose transport were not affected by the mutation. Thus it was shown that S. cerevisiae grown under the present culture conditions possessed a single and specific myo-inositol transport system. myo-Inositol transport activity was reduced by the addition of myo-inositol to the culture medium. The activity was reversibly restored by the removal of myo-inositol from the medium. This restoration of activity was completely abolished by cycloheximide.  相似文献   

12.
Calcium-dependence of sugar transport in rat small intestine   总被引:1,自引:0,他引:1  
The involvement of Ca2+ in the theophylline action on sugar transport was investigated in isolated rat small intestinal mucosa. Theophylline significantly increased cell water free sugar accumulation and reduced mucosal to serosal sugar fluxes both in the presence and absence of calcium, but the effects of theophylline were significantly less in calcium free media. In theophylline untreated tissues, calcium-deprived bathing solutions decreased tissue galactose accumulation and increased mucosal to serosal sugar flux. The calcium-channel blocker verapamil produced similar effects on intestinal galactose transport to those induced by low extracellular calcium activity. RMI 12330A and the calmodulin antagonist trifluoperazine abolished the theophylline-effects on intestinal galactose transport. Both drugs also affected sugar transport in basal conditions. These studies suggest that calcium might modulate sugar permeability across the basolateral boundary of rat enterocytes, and that its effect may be mediated by calmodulin.  相似文献   

13.
14.
15.
16.
Intestinal absorption of amino acids in the chicken occurs by way of processes which are concentrative, Na+-dependent and dependent upon metabolic energy in the form of ATP. Intestinal transport is carrier-mediated, subject to exchange transport (trans-membrane effects) and is inhibitable by sugars, reagents which inactivate sulfhydryl groups, potassium ion, and by deoxpyridoxine, an anti-vitamin B6 agent. It is stimulated by phlorizin, a potent inhibitor of sugar transport, and in Na+-leached tissue by modifiers of tissue cyclic AMP levels, e.g. theophylline, histamine, carbachol and secretin. Separate transport sites with broad, overlapping specificities function in the intestinal absorption of the various classes of common amino acids. A simple model for these sites includes one for leucine and other neutral amino acids, one for proline, beta-alanine and related imino and amino acids, one for basic amino acids, and one for acidic amino acids. Absorption of amino acids appears to be widespread in occurrence in the digestive tract of the domestic fowl; transport has been reported to be present in the crop, gizzard, proventriculus, small intestine and in the colon. By the end of the first week of life post-hatch, the caecum loses its ability to transport. Similarly, the yolk sac loses its ability by the second day post-hatch. Intestinal transport was noted before hatch and was found to be maximal immediately post-hatch. A requirement for Ca2+ appears to be lost after the first week of life post-hatch. The cationic amino acids appear to be reabsorbed by a common mechanism in the kidney. Transport rates of leucine measured in the intestine or in the erythrocyte were found to cluster about discrete values when many individual chickens were surveyed; such patterns may be an expression of gene differences between individuals. Two lines of chickens have been developed, one high and the other low uptake, through selective breeding based on the ability of individual birds to absorb leucine in erythrocytes. High leucine absorbing chickens were found to be more effective in absorbing lysine and glycine, were more effectively stimulated by Na+, had greater erythrocyte Na+, K+-ATPase activity, and their erythrocytes contained about 20% less Na+ than low line erythrocytes. The underlying genetic difference between these lines may reside at the level of the Na+, K+-ATPase and (or) with a regulatory gene determining carrier copies. Amino acid transport in erythrocytes was noted to be highest in pre-hatch chicks and to diminish during post-hatch development.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
19.
Summary The morphology and histochemical enzyme pattern of the small intestine were investigated in chicks undergoing feed restriction. Corresponding intestinal sites were compared in both restricted birds and in control birds under normal feeding. Intestines from the restricted birds showed some atrophy, the villi being slightly shorter and thinner than normal after eight days restriction, and there was an increase in the activity of alkaline phosphatase, leucine naphthylamidase, acid phosphatase, -glucuronidase, non-specific esterase and succinic dehydrogenase in the absorptive cells.The significance of these findings has been discussed in relation to the enhanced absorptive capacity of the intestine during feed restriction and its similarity to other dietary stress factors that produce enhanced absorption. Possible mechanisms for the production of such mucosal changes have been considered. It was concluded that the enhanced absorption of nutrients in semi-starved animals is correlated with increased mucosal enzyme activities.  相似文献   

20.
Myo-inositol (MI) influx as a function of concentration in rat lens consisted of a saturable component, fit by a rectangular hyperbola, and a linear component which was more distinct at high myo-inositol concentrations suggesting passive diffusion. The hyperbolic component was half-maximally saturated (Kt) at 61.3 μM and had a maximal transport rate (Jmax) of 44.6 μMol/kg wet wt/h. The linear component had an apparent permeability coefficient of 1.44 × 10?6 s?1. Sorbitol, which distributed rapidly in the extracellular space (6.83 ml/100 g wet wt), also appeared to enter the intracellular space with a permeability coefficient of 1.37 × 10?6 s?1, similar to that of myo-inositol. The influx of myo-inositol was critically dependent on the concentration of extracellular sodium consistent with a sodium-myo-inositol contransport. The kinetics of influx activation by sodium suggested an apparent 2:1 coupling ratio for sodium and myo-inositol. When potassium was used as sodium substitute, a significantly stronger influx inhibition was observed than with nondepolarizing sodium substitutes, indicating that myoinositol was driven by the electrochemicl gradient of sodium rather than the chemical gradient only. Reducing the extracellular Na concentration increased the MI concentration at which transport was half-maximally activated, suggesting an ordered binding sequence of Na followed by MI. Myo-inositol influx was competitively inhibited by phlorizin with an inhibitory coefficient (Ki) of 35 μM. Phloretin also was capable of inhibition but with a much lesser efficacy. Myoinositol desaturates from the lens at a rate of 0.00862 h?1. Approximately 19% of the efflux can be inhibited with phlorizin, suggesting that it represents carrier-mediated flux. The phlorizin insensitive flux has a rate of 0.00695 h?1 or 1.93 × 10?6 s?1, similar to the Na-independent passive influx. MI influx is due to a Na-dependent, phlorizin-sensitive active transport while the efflux consists largely of a phlorizin-independent passive leakage. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号