首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of a historical-control incidence of 39 mutants in 688 921 progeny (5.7 mutants/10(5) animals or 0.82 mutations/locus/10(5) gametes) proposals are made for the numbers of test progeny required when screening for possible mutagens using the specific-locus test in mice (7 loci). It is recommended that 25,000 control progeny should be included in each test, to establish homogeneity with the historical controls. This would also be the number of progeny required from treated males, unless significantly positive results had been obtained with smaller numbers. It would appear that the greater sensitivity of post-spermatogonial stages could more than compensate for practical difficulties in sampling these stages, rather than spermatogonia, in screening tests.  相似文献   

2.
Procarbazine is used in drug-combination treatment of Hodgkin's disease. The specific locus method was used to test and confirm the ability of procarbazine to induce gene mutations in pre- and post-meiotic germ cells of male mice. The lowest dose of procarbazine that significantly increased the mutation frequency in As spermatogonia over the control frequency was 400 mg/kg (P = 0.003). The corresponding dose for the post-spermatogonial germ-cell stages was 600 mg/kg (P = 0.009). The dose--response was linear for the point estimates of the mutation frequencies after treatment of As spermatogonia with 0, 200, 400 and 600 mg/kg. The point estimate of the mutation frequency at the 800 mg/kg level was one-third of that expected from a linear extrapolation. Variation in mutation rates among the 7 loci between the lowest (a locus) and the highest (p locus) was 12-fold. Only 24% of procarbazine-induced specific locus mutations in As spermatogonia were lethal in the homozygous condition. From the mutation spectra and the viability tests, it is concluded that procarbazine-induced mutations may be mainly due to base-pair changes. Procarbazine-induced specific-locus mutations fulfilled the criteria for the estimation of the doubling dose, the dose necessary to induce as many mutations as occur spontaneously. The doubling dose of procarbazine in As spermatogonia of mice was 114 mg/kg. The therapeutic dose for procarbazine is about 215 mg/kg. If man and mouse were equally sensitive, this dose would induce 1.9 times as many mutations as arise spontaneously. From the incidence of patients with Hodgkin's disease (1 : 42 000) the calculated population dose of procarbazine is 5.12 micrograms/kg. Assuming equal sensitivity between the sexes we can calculate, for an estimated number of 30 000 genes, the induction of about 22 mutations per million children due to procarbazine treatment. The same number of induced mutations can be calculated if the risk of patients is used for the estimation of the genetic hazard.  相似文献   

3.
4.
The chemotherapeutic agent busulfan was tested for the induction of dominant lethal and specific-locus mutations in male mice. A dose of 5 mg/kg b.w. of busulfan induces dominant lethal mutations in spermatozoa. A dose of 20 mg/kg b.w. induces dominant lethal mutations in spermatozoa and spermatids. A total of 83,196 offspring were scored in the specific-locus experiments. Busulfan-induced specific-locus mutations were recovered in spermatozoa and spermatids, but not in spermatogonia. The sensitivity patterns for the induction of dominant lethal and specific-locus mutations by busulfan in germ cells of male mice are similar but not identical.  相似文献   

5.
Chlormethine (WHO), a nitrogen mustard (2,2'-dichloro-N-methyldiethylamine), induces dominant lethal and specific-locus mutations in spermatozoa and spermatids of mice.  相似文献   

6.
To study how gamma-ray-induced germ-cell mutations are fixed at the early embryonic stage of the next generation, genomic alterations in the b locus mutants (colorless melanophores) detected during development in the medaka specific-locus test (SLT) were analyzed. First, nine anonymous DNA markers linked to the b locus were cloned and mapped into the region extending about 47cM surrounding the b locus. Next, losses of paternal alleles of these DNA markers were examined in each of the 51 gamma-ray-induced b locus mutants obtained after irradiation of sperm or spermatids. In these mutants, 47 were dominant lethals, three were semi-viable and one was viable. All the mutants examined had large deletions surrounding the b locus. One viable mutant had an interstitial deletion, while all the semi-viable and dominant lethal ones appeared to have terminal deletions. Deletions extending about 20-35cM were the most frequently observed in 18 of the 51 mutants examined. The largest one extended more than 40cM. These results suggest that most of the gamma-ray induced germ cell mutations recovered as total specific-locus mutants were accompanied by large genomic deletions, which eventually led the mutant embryos to dominant lethality.  相似文献   

7.
8.
Using a sequential mating procedure, the induction of specific-locus mutations by ethyl methanesulfonate (EMS) was reinvestigated in male mice. Doses of 175 mg/kg b.w. and 250 mg/kg b.w. of EMS induce gene mutations in the mating intervals 5-8 and 9-12 days post treatment. However, only the frequency of dominant lethal mutations increases with the dose, not the frequency of specific-locus mutations. This observation implies that with a higher dose of EMS a larger fraction of mutagenized spermatozoa and spermatids are selectively eliminated, leading to underestimation of the specific-locus mutation yield at high doses. EMS does not induce specific-locus mutations in spermatogonia.  相似文献   

9.
10.
The induction of dominant cataract mutations by procarbazine was studied concomitantly with the induction of specific-locus mutations in treated male mice. The most effective dose in the specific-locus test, 600 mg/kg of procarbazine, and a fractionated dose of 5 X 200 mg/kg were used. The frequencies of dominant cataract mutations were higher, but not significantly different from the historical control. The ratio between the number of recovered specific-locus and dominant cataract mutations was in accordance with that found in our experiments with gamma-rays (Ehling et al., 1982; Kratochvilova, 1981) or in experiments with ethylnitrosourea (Favor, 1986). A total of 3 dominant cataract mutations were recovered in the offspring of procarbazine-treated spermatogonial stem cells. Two mutations had complete penetrance while the third exhibited a reduced penetrance of approximately 70%. The viability and fertility of the heterozygotes of all 3 mutations were not affected. Only 1 mutation was shown to be viable as a homozygote.  相似文献   

11.
Diethyl sulfate (DES), a monofunctional alkylating agent, induces mutations and chromosomal aberrations in many different organisms and cell systems, including dominant-lethal mutations in male mice. However, until now it could not be demonstrated that DES induces specific-locus mutations in mice. This observation would contradict the close correlation observed between the induction of dominant-lethal mutations and specific-locus mutations in mice with other chemicals. DES induces dominant-lethal and specific-locus mutations in spermatozoa and late spermatids of mice. The mutation frequency for dominant-lethal mutations is dose-dependent, while for specific-locus mutations it is independent of the dose. In the mating interval 5-8 days post-treatment the mutation frequency for 200 mg/kg DES is 17.0 X 10(-5) and for 300 mg/kg 7.5 X 10(-5) mutations per locus. The dose-dependent increase of dominant-lethal mutations probably reduced the chance of recovering specific-locus mutations. The importance of these findings for mutagenicity testing is discussed.  相似文献   

12.
Cyclophosphamide is the most widely used antineoplastic agent. It is also used to condition patients for bone-marrow transplantations. Because of the general interest of this compound we initiated a systematic study of the induction of dominant-lethal and specific-locus mutations in male mice. In addition, we investigated the induction of specific-locus mutations by the combined treatment of cyclophosphamide and ionizing radiation.A dose of 40 mg/kg bw of cyclophosphamide caused dominant-lethal mutations in male mice only in the 1st and 2nd week after treatment. A dose of 120 mg/kg induced dominant-lethal mutations in the mating intervals 1–21 days posttreatment. No dominant lethal mutations were observed after the 3rd week. The same differential spermatogenic response was observed for the induction of specific-locus mutations. Cyclophosphamide induced recessive mutations exclusively in spermatozoa and spermatids. No mutations were recovered from treated spermatocytes and spermatogonia. In contrast to cyclophosphamide, radiation induces specific-locus mutations in all germ-cell stages.The pretreatment with cyclophosphamide 24 h before radiation enhanced the frequency of specific-locus mutations in spermatogonia. The distribution of the observed mutations among the 7 loci and their viability supports the hypothesis that these mutations were induced by radiation rather than by cyclophosphamide. The compound causes an immediate inhibition of DNA and RNA synthesis in spermatogonia. The inhibition very likely interferes with the repair process. The disturbance of the repair process is probably the cause of the synergistic effect for the induction of specific-locus mutations in spermatogonia of mice after pretreatment with cyclophosphamide 24 h before irradiation.  相似文献   

13.
Urethane, a chemical that has given varied results in mutagenesis assays, was tested in the mouse specific-locus test, and its effect on germ-cell survival was explored. Altogether 32,828 offspring were observed from successive weekly matings of males exposed to the maximum tolerated i.p. dose of 1750 mg urethane/kg. The combined data rule out (at the 5% significance level) an induced mutation rate greater than 1.7 times the historical control rate. For spermatogonial stem cells alone, the multiple ruled out is 3.2, and for poststem-cell stages, 3.5. Litter sizes from successive conceptions made in any of the first 7 weeks give no indication of induced dominant lethality, confirming results of past dominant-lethal assays. That urethane (or an active metabolite) reaches germ cells is indicated by SCE induction in spermatogonia demonstrated by other investigators. Cytotoxic effects in spermatogonia are suggested by our finding of a slight reduction in numbers of certain types of spermatogonia in seminiferous tubule cross-sections and of a borderline decrease in the number of litters conceived during the 8th and 9th posttreatment weeks. The negative results for induction of gene mutations as well as clastogenic damage are at variance with Nomura's reports of dominant effects (F1 cancers and malformations) produced by urethane.  相似文献   

14.
X-ray-induced specific-locus mutation rate in newborn male mice   总被引:2,自引:0,他引:2  
The specific-locus mutation frequency resulting from 300 R of acute X-irradiation has been determined for the germ cells present in newborn male mice. The frequency is 13.7·10?8 mutations/locus/R, which is statistically significantly lower than that of 29.1·10?8 mutations/locus/R found earlier for the same loci in spermatogonia of the adult male by W. L. Russell. The mutation rate for newborn males does not differ significantly from the induced specific-locus frequency reported for fetal males by T. C. Carteret al.The incidence of clusters of specific-locus mutations found following the irradiation of the newborn males was statistically significantly higher than the cluster incidence reported by W. L. Russell for similar irradiation of adult males. This presumably indicates the survival of relatively fewer reproductive cells following irradiation of the day-o testis.Although there are suggestions that the distribution of mutations among the loci following irradiation of the newborn males may be different from that of the irradiated adults, no statistically significant differences are demonstrated.It is quite possible that the testis of the newborn mouse may be comparable to the relatively undifferentiated human testis which persists for approx. 10 years. Until the present research was undertaken, no attempt had been made to determine the specific-locus mutation frequency resulting from X-irradiation of newborn male mice. Although some important questions still remain concerning the explanation for the lower mutational response of the newborn mouse testis, from the hazard standpoint it is reassuring that the mutation frequency of the newborn male is statistically significantly lower than that of the adult.  相似文献   

15.
The specific-locus mutation frequency resulting from 300 R of acute X-irradiation has been determined for the germ cells present in male mice at 2, 4, 6, 8, 10, 14, 21, 28, and 35 days of age. The sample size was large enough for each of these nine age groups to ensure that a high mutation rate would be noticed. The testis of the mouse undergoes many developmental changes between birth, when most or all germ cells are gonocytes, and 35 days, when the cell population has come to resemble that of the adult. It was important to know if the germ cells present in these developmental stages of immature male mice yield the same mutation frequency as that found earlier for spermatogonia in the adult by W. L. Russell.None of the nine age groups has a mutation rate statistically significantly higher than that of the adult. Taken together, the nine groups of males have an average mutation frequency quite to that of the adult. This does not rule out the possibility that individual age groups may have a mutation frequency somewhat different from that of the adult.The distribution of mutations among the loci seems to be similar to that found for mutations induced in spermatogonia of the adult. Clusters of specific-locus mutations were found only on day 21.This paper and that presented earlier on the newborn report the first specific-locus mutation-rate studies on male mice irradiated between birth and adulthood. If the results can be carried over to man, it can be concluded that irradiation of the immature testis, from birth to puberty, will not present any greatly increased genetic hazard over that from irradiation of the adult testis. In fact, as the data stand in the mouse, they indicate a mutation rate similar to the adult for all but the earlier stages tested and, for these stages, a probably lower rate, representing a transition from the significantly lower rate reported earlier for newborns.  相似文献   

16.
DNA crosslinking, sister-chromatid exchange and specific-locus mutations   总被引:2,自引:0,他引:2  
Chinese hamster ovary cells were treated with the DNA-crosslinking chemicals, mitomycin C (MMC) and porfiromycin (POR), and their monofunctional derivative decarbamoyl mitomycin C (DCMMC). After exposure, the cells were studied for the induction of sister-chromatid exchanges (SCEs) and mutations at the hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase loci. The frequency of SCEs varied significantly in successive sampling intervals, requiring the weighting of each interval by the percentage of second-division mitosis in that interval to obtain the mean SCE frequency for each dose. All 3 compounds were potent inducers of SCEs but weakly mutagenic. All 3 chemicals by concentration were approximately equally effective in inducing SCEs or mutations. When the induced SCEs and mutations were compared at equal levels of survival, DCMMC was slightly more effective than MMC or POR in inducing SCEs and somewhat less mutagenic. These results indicate that the DNA interstrand crosslink is not the major lesion responsible for the induction of SCE or mutation by these compounds.  相似文献   

17.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

18.
The inducibility of heritable mutations in female mammals has been measured in the mouse specific-locus test (SLT). For radiation-induced mutations, a large body of data has been accumulated that includes information about biological and physical factors that influence mutation yields. However, relatively few SLT studies in females have been conducted with chemicals to date. A single estimate of the spontaneous mutation rate in oocytes, 6/536,207, has been derived as the most appropriate one to subtract from experimental rates. This rate is highly significantly below the spontaneous mutation rate in males. Mutations recovered from females mutagenized at any time after about the 12th day post-conception are induced in non-dividing cells. In adult females, most oocytes are arrested in small follicles; maturation from this stage to ovulation takes several weeks. High-dose-rate radiations are more mutagenic in mature and maturing oocytes than in spermatogonia of the male; on the other hand, no clearly induced mutations have been recovered from irradiated arrested oocytes. Efficient repair processes have been invoked to explain the latter finding as well as the upward-curving dose-effect relation for acute irradiation, and the fact that dose protraction drastically reduces mutation yield from mature and maturing oocytes. The dose-protraction effect is much greater than that found in spermatogonia. Radiation-induced mutation rates in embryonic, fetal, and newborn females are overall lower than those in the mature and maturing oocytes of adults. A dose-protraction effect has also been demonstrated at an early developmental stage when the nuclear morphology of mouse oocytes most resembles that of the human. Of only 5 chemicals so far explored for their effect in oocytes, 2 (ethylnitrosourea, ENU, and triethylenemelamine, TEM), and possibly a third (procarbazine hydrochloride, PRC), are mutagenic--with at least one of these (ENU) mutagenic in arrested as well as maturing oocytes. However, the mutation rate is, in each case, lower than for treated male germ cells. By contrast, ENU-induced mutation yield for the maternal genome of the zygote is an order of magnitude higher than that for the zygote's paternal genome or for spermatogonia. A high proportion of mutants derived from chemical treatment of oocytes (including the oocyte genome in zygotes) are mosaics, probably owing to lesions affecting only 1 strand of the DNA. A characteristic of specific-locus mutations induced in oocytes is that they include a considerably higher percentage of large (multi-locus) lesions (LLs) than do mutations induced in spermatogonia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Methyl methanesulfonate (MMS) induces specific-locus and dominant lethal mutations in spermatozoa and spermatids of mice. A dose of 15 mg/kg b.w. of MMS induces 9% dominant lethal mutations in the most sensitive germ-cell stages, corresponding to the mating intervals 5-8 and 9-12 days post treatment. A dose of 150 mg/kg b.w. of MMS in the same mating intervals induces 100% dominant lethal mutations. The sensitivity pattern for the induction of dominant lethal and specific-locus mutations is the same. In the mating interval 5-8 days a dose of 20 mg/kg b.w. of MMS induced 3.8 x 10(-5) mutations per locus per gamete. The yield of specific-locus and dominant lethal mutations in the low dose range increases proportionally with the dose. A dose given in 2, 4 or 5 fractions yields the same frequency of mutations as a single injection of the total dose. The additivity of small doses proves that the pre-mutational lesions are not or only partially repaired in these stages and that MMS is not or only partially detoxified. In addition, the frequency of dominant lethal and specific-locus mutations depends on the germ-cell stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号