首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. The effects of thermal acclimatization at 10 and 24°C on heart rate were investigated on unrestrained soles (Solea vulgaris).
  • 2.2. The sensitivity of heart rate to temperature changes induced by temperature acclimatization was higher in cold-acclimatized than in warm-acclimatized soles.
  • 3.3. Heart rate of cold-acclimatized fish to temperature changes was not affected by blocking the vagal tone with atropine.
  • 4.4. After atropine treatment the ability of heart rate to show thermal compensation decreased in warm-acclimatized soles.
  • 5.5. It is suggested that the vagus nerve can function differently at different temperatures.
  相似文献   

2.
  • 1.1. Common carp (Cyprinus carpio) exposed to experimental temperatures of 12, 18, 24, 30 or 36°C for a 4-week period were used to investigate the effect of temperature acclimation on the frequency of opercular movement (FOM), growth and cytochrome c oxidase (CCO) activity in heart, liver and muscle.
  • 2.2. An exponential relationship between FOM and temperature after the first week (1010 =1.76) disappeared after the second week.
  • 3.3. The initially high FOM at temperatures of 30 or 36°C and the low FOM at 18 or 12°C changed over 4 weeks to approach the FOM of fish at 24°C.
  • 4.4. This change in the relationship of FOM to temperature from highly dependent to independent appeared to be thermal compensation.
  • 5.5. Heart and liver CCO activities were significantly affected by temperature, with the lowest activity at the approximate optimum temperature for growth, 24°C.
  • 6.6. Highest CCO activities for heart and liver occurred at both the highest and lowest temperatures.
  • 7.7. Among the three tissues, heart CCO activity was generally the highest and most affected by acclimation temperature.
  • 8.8. Muscle tissue had the lowest CCO activity and was unaffected by temperature.
  • 9.9. The high CCO activity at a cold acclimation of temperature 12°C was probably due to thermal compensation and the high activity at 36°C may have been a result of thermal stress.
  相似文献   

3.
  • 1.1. Heart rates of adult aquatic red-spotted newts can be conveniently recorded using an impedance pneumograph.
  • 2.2. Heart rates decrease linearly with decreasing temperature.
  • 3.3. Submergence in normoxic and hypoxic water at 10°, 15°, and 20°C results in bradycardia which is more pronounced in hypoxic water.
  • 4.4. At 5°C one newt exhibited the above pattern, but bradycardia was not exhibited by the other newt during normoxic submergence.
  • 5.5. Diminishing heart rates are probably due to oxygen deficiency, not immersion alone.
  • 6.6. Recovery from bradycardia in air is rapid and not linked with resumption of aerial breathing.
  相似文献   

4.
  • 1.1. Changes in the blood and in the rate of oxygen consumption of Japanese eels injected intramuscularly in the head with a lethal dose of typical or atypical Aeromonas salmonicida at 20°C were investigated.
  • 2.2. Eels infected with the bacteria became moribund within 4 to 6 days, and then died within 1 day.
  • 3.3. The O2 consumption rate and blood parameters changed markedly with infections. The responses of hosts to infection by the two kinds of bacteria differed with regard to the following four points: blood pH, plasma Cl, lactic acid, and the numbers of granulocytes and lymphocytes.
  • 4.4. The responses of eels infected with atypical A. salmonicida were larger and more rapid than those of eels infected with typical A. salmonicida.
  相似文献   

5.
  • 1.1. Oxygen consumption at 18°C was 60% of the rate at 22 and 26°C.
  • 2.2. Critical points, where the rate of oxygen consumption changed, were defined at 22°C (2.89 mg DO) and 26°C (3.46 mg DO). Linear regressions were fitted showing that oxygen consumption declined significantly (81.5% ±4.5) below the critical point.
  • 3.3. Oxygen consumption was proportional to weight. Allometric relationships resulted in variable temperature-related coefficients for respiratory dependence on weight, a reflection of the crayfish adaptation towards re-establishment of a new equilibrium state.
  • 4.4. Heart beat rate was lower at 18°C, and highest at the acclimation temperature (22°C). Stress at 26°C was evident.
  相似文献   

6.
  • 1.1. The extent of fatty acid synthesis from [1-14C]acetate in liver slices was reduced 6-fold when eels were fasted for 1–7 weeks and 20-fold when fasted for 39 weeks; thereafter hepatic lipogenesis seemed to remain constant for up to 95 weeks of fasting.
  • 2.2. After a 1–3 week fast some hepatic enzyme activities were reduced (acetyl-CoA carboxylase decreased 2-fold and fatty acid synthetase declined 5-fold), while others remained unchanged (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, α-glycerol phosphate dehydrogenase as well as malic enzyme and ATP-citrate lyase).
  • 3.3. The optimum temperature for measuring both total lipid synthesis and lipogenic enzyme activity in eel liver was found to be 30°C.
  相似文献   

7.
  • 1.1. Coatis are chiefly diurnal, showing marked nycthemeral variations of body temperature and oxygen uptake.
  • 2.2. The thermoneutral zone extends from 25–33°C; the basal metabolic rate is about 40% below the value predicted from body mass.
  • 3.3. Thermoregulation in cold is excellent, partly due to decreasing thermal conductance at falling ambient temperatures.
  • 4.4. Exposure to temperatures above 35°C is endured for only short periods.
  • 5.5. Basal heart rate is reduced to about 70% of the predicted level. The contribution of heart rate to increased oxygen demands at falling ambient temperatures is rather low.
  • 6.6. The measured physiological characteristics of coatis are discussed with regard to the high mobility and the wide distribution range of these procyonids.
  相似文献   

8.
ab]
  • 1.1. Fennecs show marked diurnal variations of body temperature and heart rate.
  • 2.2. Basal metabolic rate (0.358 ml/ghr) is 39% lower than predicted by body mass, minimal conductance is reduced for 23%.
  • 3.3. Fennecs have a wide thermoneutral zone (23.4–32.0°C) and a low rate of evaporative water loss.
  • 4.4. Basal heart rate is considerably reduced. Oxygen pulse increases with decreasing ambient temperature. The higher oxygen demands below thermal neutrality, however, are met primarily by a rise in heart rate.
  • 5.5. Newborn fennecs show a metabolic response to cold from the first day of life.
  相似文献   

9.
  • 1.1. F1-ATPase from eel liver mitochondria at low concentrations preserves unaltered the enzymatic activity for more than 20 min over a temperature range of 6–36°C.
  • 2.2. The Arrhenius plot of ATP hydrolysis at saturating substrate concentration appears biphasic with a break-point at 16°C and activation energies of 14.4 and 56.1 kJ/mol.
  • 3.3. The ultraviolet, fluorescence and circular dichroism spectra of the enzyme, below and above 16°C, have been recorded; the fluorescence emission spectra of F1-ATPase excited at 275 nm, and the circular dichroism spectra, are different at the two temperatures examined.
  • 4.4. It is concluded that temperature induces two different conformational states of F1-ATPase with different catalytic properties.
  • 5.5. Ultraviolet spectroscopic features and temperature-dependence of eel liver mitochondrial F1-ATPase are discussed in relation to mammalian F1-ATPases.
  相似文献   

10.
  • 1.1. Anterior byssus retractor muscle of Mytilus (ABRM) was stimulated to contract by ACh (acetylcholine) and effects of temperature (5–30°C), FDNB (1-fluoro 2,4 dinitro-benzene) and IAA (iodoacetic acid) on tension response were examined.
  • 2.2. Isometric tension was highest at the temperature range of 10–20°C and decreased at higher and lower temperature than that range.
  • 3.3. The rate of tension decay after washing of ACh was accelerated by the increase of temperature.
  • 4.4. Tension redevelopment after release of 1 % during contraction was much smaller at 5°C than at 20°C.
  • 5.5. Tension development by ACh and the rate of tension decay after washing of ACh were remarkably decreased by the treatment of FDNB or IAA.
  • 6.6. The above results were discussed from the viewpoint that energy metabolism might be related to catch.
  相似文献   

11.
  • 1.1. The cardiovascular physiology of adult Carcinus maenas (L.) emerging into air has been investigated at three different air temperatures.
  • 2.2. Transition from seawater to air or vice versa triggered transient increases in cardiac and locomotor activity.
  • 3.3. However, crabs became inactive 5–10 min after emerging from seawater (15°C) into air at the same temperature (15°C) or at lower temperatures (12–13°C) and heart rate fell.
  • 4.4. At higher air temperatures (18–20°C) heart rate rose but to a lesser extent than predicted from aquatic Q10 heart-rate values.
  • 5.5. Crabs were again quiescent in aerial conditions.
  • 6.6. Mean arterial oxygen tension (Pao2) was ~ 74 mmHg in submerged crabs but fell to ~ 38 mmHg in air while mean arterial carbon dioxide tension (Pao2) increased from 1 to 4 mmHg resulting in respiratory acidosis.
  • 7.7. A model of gill function is proposed to explain the development of internal hypoxia in air.
  • 8.8. The results are discussed in relation to the distribution of adult and juvenile C. maenas in situ.
  相似文献   

12.
  • 1.1. Ultradian oscillations in the min and hr range on long-term (24-hr) computerized recordings of heart rate in rainbow trout Oncorhynchus mykiss, acclimated to 5, 10 and 15°C water temperature, were investigated. Eight-hour duration time series derived from the heart rate recordings were analysed for their harmonic content in the ultradian band by spectral analysis.
  • 2.2. A significant ultradian rhythm at around 0.011 cycles/min (approximately 91-min period) was detected in the power spectral density functions of all the 8-hr duration time series derived from the heart rate recordings at the three experimental water temperatures.
  • 3.3. The spectral power of the ultradian oscillation detected in heart rate of trout was found to increase significantly with increasing temperature.
  • 4.4. The possible endogenous origin of the ultradian rhythm detected in heart rate of Oncorhynchus mykiss is discussed.
  相似文献   

13.
  • 1.1. Bullfrogs were maintained in air-saturated water at 4°C under an 8:16hr, light:dark, photoperiod for 50 days from December to February.
  • 2.2. Heart rates and mean arterial pressures from these submerged frogs remained stable throughout the entire period in the cold. The slow heart rates that were observed appeared to result from a combination of low temperature and submergence. No indication of torpor was observed in any of the animals.
  • 3.3. These findings demonstrate that the cardiovascular system of bullfrogs apparently retains normal regulatory function when these animals are maintained under temperature and photoperiod conditions analogous to those found during overwintering.
  相似文献   

14.
  • 1.1. In 43 European bison divided into three groups (Group A, 3–8-month-old calves; Group B, 18-month-7-year-old young bison; Group C, 12–24-year-old bison) the rectal, humerus region and abdomen region temperatures were measured.
  • 2.2. The experiments were carried out in winter months, from mid-December to mid-March.
  • 3.3. The mean rectal temperatures changed from 38.55°C in calves to 38.15°C in the oldest bison.
  • 4.4. The mean temperatures of the humerus region changed from 20.69°C in calves to 21.49°C in older bison.
  • 5.5. The mean temperatures of the abdomen region changed from 20.79°C in calves to 22.17°C in older bison (Gr. B).
  • 6.6. The cluster analysis divided the bison into four groups named hot, warm, cool and cold bison.
  • 7.7. Only air temperature measured 2 m above the ground and snow cover influenced the integrated bison temperature. Age, sex and mass as well as some environmental factors had no influence.
  • 8.8. Measurements made 1 to nearly 4hr after a bison's death showed a drop in rectal temperature and mostly increases in temperatures of the humerus and abdomen regions.
  相似文献   

15.
  • 1.1. The exponent (b) relating metabolic rate to dry weight in excised gills of Tagelus plebeius is not maintained constant throughout the seasons or upon acute exposure to temperatures of 9–34°C.
  • 2.2. Acclimation (11–29°C) and test (9–34°C) temperatures have a significant effect (α = 0.01) on the mean rate of oxygen uptake by the gills.
  • 3.3. Positive seasonal thermal acclimation is observed up to acclimation temperatures of 19.5–20°C, which is also the temperature of minimum respiratory response to all acute test temperatures.
  • 4.4. Regions of thermal metabolic insensitivity are seen over small acute temperature ranges near the acclimation temperatures.
  相似文献   

16.
  • 1.1. Resting oxygen consumption at 10°C did not change from normoxia (150 mm Hg) down to an oxygen tension of 55 mm Hg for the flounder, Platichtys flesus.
  • 2.2. Flounders exposed to hypoxia showed increased levels of blood glucose and lactate, dependent on the degree of hypoxia.
  • 3.3. Due to hypoxia glycogen was depleted in the liver and swimming muscle but in the heart there was no significant change.
  • 4.4. Liver glucose increased after 7 hr of hypoxia. Heart and muscle glucose did not change but the absolute glucose concentration in the heart was five times higher than in the muscle.
  • 5.5. There is a transient accumulation of lactate in heart, liver and kidney after 7 hr of hypoxia while lactate accumulation in the swimming muscle is significant only after 21 hr of hypoxia.
  • 6.6. Succinate only accumulated in the liver while alanine accumulated in muscle, heart and liver.
  相似文献   

17.
  • 1.1. Studies were conducted in order to determine the combined effects of low environmental pH and temperature on embryonic survival capacity and metabolic rates in the dragonfly, Anax junius Drury. Studies were also conducted to assess the effects of hypoxia on hatching success as well as to investigate the role of hypoxia as a possible physiological triggering mechanism for hatching.
  • 2.2. At water temperatures of 10–30°C, an environmental pH value of 3.0 was extremely limiting and significantly reduced hatching success.
  • 3.3. Over a pH range of 3.0–5.0, a water temperature of 30°C was found to be severely limiting. Over a pH range of 6.0–7.0, hatching success was greater than 80% at test temperatures ranging from 10 to 25°C.
  • 4.4. Embryos of A. junius exhibited a greater tolerance to markedly low environmental pH (3.0) than that previously reported for fish and amphibians, although survival capacity was less than 10%.
  • 5.5. An environmental pH value of 3.0 has a significant detrimental effect on embryonic development. Survivorship and developmental rate increase significantly over a pH range of 4.0–5.0.
  • 6.6. Oxygen consumption rates were lowest for fertilized eggs exposed to a pH of 3.0 at all test temperatures (10–30°C). Metabolic rates increased significantly at pH 4.O.
  • 7.7. Embryos hatch successfully under hypoxic conditions in both aqueous and nonaqueous media. Results suggest that hypoxia acts as a triggering mechanism for hatching in this aquatic insect.
  相似文献   

18.
  • 1.1. Both the small riparian skink Sphenomorphus quoyii and its completely terrestrial relative Ctenotus robustus respond to forced submergence with instantaneous bradycardia.
  • 2.2. The strength of the bradycardia was affected by water temperature and fear. Dives into hot (30°C) water produced weak and erratic bradycardia compared to dives into cold (19.5°C) water. For S. quoyii the strongest bradycardia occurred when submergence took place in water at a lower temperature than the pre-dive body temperature.
  • 3.3. Upon emergence both species of skink exhibited elevated heart rates and breathing rates while heating from 19.5 to 30°C, compared to heating at rest. The increased heart and breathing rates probably act to replenish depleted oxygen stores and remove any lactate. Increased heart and ventilation rates are not indicators of physiological thermoregulation in this case.
  • 4.4. Both lizard species exhibited higher heart rates and ventilation frequencies during heating than cooling.
  • 5.5. Compared to its terrestrial relative, S. quoyii does not appear to possess any major thermoregulatory, ventilatory or cardiovascular adaptations to diving. However, very small reptiles may be generally preadapted to use the water to avoid predators.
  相似文献   

19.
  • 1.1. Mortality was 100% at pH 3.5 over a temperature range of 10–30°C for embryos and nymphs of Caenis diminuta and C. hilaris.
  • 2.2. Hatching success for both species was highest at pH values above 4.5.
  • 3.3. Survival capacities were significantly higher at 20°C over a pH range of 4.0-7.2.
  • 4.4. Oxygen consumption rates increase as a function of increasing temperature and reduced acidity.
  • 5.5. Loss of the nymphal righting response was observed at pH 3.5. This response can be used as a behavioral assay for acid stress.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号