首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured endotoxin and bacterial levels in tap water, in water purified by reverse osmosis, and in dialysate samples over a 4-month period in a new 10-bed renal dialysis unit. Water treated by reverse osmosis is conducted to the 10 stations through 111 m of piping composed of acrylonitrile butadiene styrene (ABS). All determinations were made prior to the opening of the unit and after the system was purged for 35 h with all bedside station taps open. Formaldehyde disinfection of the piping system was attempted with a recommended protocol after 11 weeks by feeding 2.5 liters of 37% formaldehyde (0.85%, vol/vol) into the delivery system. Prior to water purging, 24 ng of endotoxin per ml was detected. This level decreased to 2.0 ng of endotoxin after the purging. Levels of endotoxin remained below 1.0 ng of endotoxin per ml throughout the duration of the study. In contrast, the level of viable microorganisms recovered from the treated water was approximately 3.5 X 10(4) CFU/100 ml. Even after disinfection of the system, there was no significant decrease in culturable bacteria from the water even though endotoxin levels were lower. Species isolated from the renal dialysis system were predominately pseudomonads, whereas species isolated from the tap water were Bacillus and Flavobacterium species. ABS provides a surface suitable for long-term colonization and growth of bacteria. Currently recommended decontamination protocols are ineffective in removing potentially pathogenic bacteria from ABS pipes and thus constitute an increased risk to patients undergoing dialysis.  相似文献   

2.
We measured endotoxin and bacterial levels in tap water, in water purified by reverse osmosis, and in dialysate samples over a 4-month period in a new 10-bed renal dialysis unit. Water treated by reverse osmosis is conducted to the 10 stations through 111 m of piping composed of acrylonitrile butadiene styrene (ABS). All determinations were made prior to the opening of the unit and after the system was purged for 35 h with all bedside station taps open. Formaldehyde disinfection of the piping system was attempted with a recommended protocol after 11 weeks by feeding 2.5 liters of 37% formaldehyde (0.85%, vol/vol) into the delivery system. Prior to water purging, 24 ng of endotoxin per ml was detected. This level decreased to 2.0 ng of endotoxin after the purging. Levels of endotoxin remained below 1.0 ng of endotoxin per ml throughout the duration of the study. In contrast, the level of viable microorganisms recovered from the treated water was approximately 3.5 X 10(4) CFU/100 ml. Even after disinfection of the system, there was no significant decrease in culturable bacteria from the water even though endotoxin levels were lower. Species isolated from the renal dialysis system were predominately pseudomonads, whereas species isolated from the tap water were Bacillus and Flavobacterium species. ABS provides a surface suitable for long-term colonization and growth of bacteria. Currently recommended decontamination protocols are ineffective in removing potentially pathogenic bacteria from ABS pipes and thus constitute an increased risk to patients undergoing dialysis.  相似文献   

3.
The mutagenicity of SRM 1649 and 1650 was tested in the presence of rat liver S9 mix which was induced by polychlorinated biphenyl (PCB) or by the combination of phenobarbital and 5,6-benzoflavone. The S9 mix induced by PCB activated benzo[a]pyrene strongly. The S9 mix induced by phenobarbital-5,6-benzoflavone activated the complex mixtures to approximately the same extent as that induced by PCB. This finding indicates that phenobarbital-5,6-benzoflavone instead of PCB may be suitable as an inducer under some conditions.The preincubation procedure for the mutagenicity test was performed by preincubating the test compound, S9 mix and bacteria for 20 min in a water bath. This procedure was as effective as the plate incorporation test.  相似文献   

4.
5.

Objectives

To demonstrate the effectiveness of a novel two-stage system coupling hydrolytic acidification with algal microcosms for the treatment of acrylonitrile butadiene styrene (ABS) resin-manufacturing wastewater.

Results

After hydrolytic acidification, the BOD5/COD ratio increased from 0.22 to 0.56, showing improved biodegradability of the wastewater. Coupled with hydrolytic acidification, the algal microcosms showed excellent capability of in-depth removal of COD, NH3–N and phosphorus with removal rates 83, 100, and 89%, respectively, and aromatic pollutants, including benzene, were almost completely removed. The biomass concentration of Chlorella sp. increased from 5 × 106 to 2.1 × 107 cells/ml after wastewater treatment.

Conclusions

This two-stage coupling system achieved deep cleaning of the benzene-containing petrochemical wastewater while producing greater algae biomass resources at low cost.
  相似文献   

6.
7.
8.
9.
H Tokiwa  K Horikawa  N Sera 《Mutation research》1992,276(1-2):139-144
The mutagenicity of SRM 1649 and 1650 was tested in the presence of rat liver S9 mix which was induced by polychlorinated biphenyl (PCB) or by the combination of phenobarbital and 5,6-benzoflavone. The S9 mix induced by PCB activated benzo[a]pyrene strongly. The S9 mix induced by phenobarbital-5,6-benzoflavone activated the complex mixtures to approximately the same extent as that induced by PCB. This finding indicates that phenobarbital-5,6-benzoflavone instead of PCB may be suitable as an inducer under some conditions. The preincubation procedure for the mutagenicity test was performed by preincubating the test compound, S9 mix and bacteria for 20 min in a water bath. This procedure was as effective as the plate incorporation test.  相似文献   

10.
The effects of pretreatment with toluene, o-, m-, p-xylene and mesitylene were investigated on the microsomal enzymes of liver, kidney and lung in rats. The activities of aminopyrine N-demethylase, aryl hydrocarbon hydroxylase, aniline hydroxylase, NADPH-cytochrome c reductase, as well as the concentrations of cytochrome P-450 and cytochrome b5 were determined. The effects were most marked in the liver, where toluene caused increase in aniline hydroxylase and cytochrome P-450; o-xylene in aminopyrine N-demethylase and cytochrome b5; m-xylene and mesitylene in all the enzymes investigated. In kidneys, all the compounds increased the activity of aniline hydroxylase; m-xylene induced cytochrome P-450 and b5 as well as NADPH-cytochrome c reductase; p-xylene induced cytochrome P-450, and mesitylene cytochrome P-450 and b5. Aminopyrine N-demethylase activity was decreased by toluene. In lungs, only mesitylene caused any significant differences from the controls: increase in aminopyrine N-demethylase and aryl hydrocarbon hydroxylase, decrease in aniline hydroxylase. The methylbenzenes tested induced the microsomal enzymes in a rough correlation to the number of their methyl groups and their hydrophobic properties.  相似文献   

11.
12.
To study the relationship between the dose of phenobarbital (PB) and the magnitude of its effects on microsomal enzymes, cytochrome P-450, UDP-glucuronyl transferase (UDPGT), and glucose-6-phosphatase (G6P) activities were determined in liver homogenate and microsome preparations from control rats and rats treated for 6 days with PB at doses ranging from 1 to 125 mg/kg/day. Both P-450 and UDPGT activities were enhanced by PB in a dose-related fashion. However, while the lowest dose of the drug to produce significant induction of both enzymes was the same (3 mg/kg), maximal induction of P-450 (214%) and UDPGT (285%) was obtained with different doses of PB, namely 75 and 125 mg/kg, respectively. UDPGT induction could equally be demonstrated regardless of whether "native" enzyme or enzyme activated by UDP-N-acetyl glucosamine, digitonin or deoxycholate was employed. In contrast to these inducing effects of the drug on P-450 and UDPGT, PB treatment resulted in a dose-related inhibition of G6P activity. The inhibitory effect was observed with both "native" and deoxycholate-activated enzymes, and could be demonstrated whether the data were expressed as enzyme specific activity (nanomoles per minute per milligram microsomal protein) or as total G6P activity (micromoles per minute per 100 g body weight). These results indicate that: (I) enzyme induction by PB is dose-related; (ii) induction of both P-450 and UDPGT is obtained in the rat with doses of the drug similar to those given to man; and (iii) observed inhibition of G6P activity by PB does not solely reflect an enzymatic dilution secondary to the proliferated endoplasmic reticulum.  相似文献   

13.
14.
In this Minireview, we discuss our findings on phosphorylation of cytochromes P450 (CYP) and influence of this modification on metabolic toxification and/or detoxification of a variety of mutagens. We show that phosphorylation drastically interferes with the mutagenicity of several classes of compounds which are of high human relevance (cytostatic drugs of the cyclophosphamide type, aromatic amines/amides, and nitrosamines). We illustrate this by describing the consequences of the stimulation of protein kinase A (with the example of CYP2B1 and CYP2E1), stimulation of protein kinase C, and inhibition of protein phosphatases PP1 and PP2A (with the example of CYP1A1 and CYP1A2). We discuss a possible mechanism governing these phosphorylation events.  相似文献   

15.
16.
The reaction between 2'-deoxycytidine and styrene 7,8-oxide (SO) resulted in alkylation at the 3-position and at the O(2)-position through the alpha- and beta-carbons of the epoxide but at the N(4)-position only through the alpha-carbon. The 3-alkylated adducts were found to deaminate to the corresponding 2'-deoxyuridine adducts (37 degrees C, pH 7.4) with half-lives of 6 min and 2.4 h for the alpha- and beta-isomers, respectively. The N(4)-alkylated products were stable at neutral pH. The O(2)-alkylated products were unstable being prone to depyrimidation and to isomerisation between alpha- and beta-isomers. In SO-treated double-stranded DNA, enzymatic hydrolysis allowed the identification of the beta3-deoxyuridine and alphaN(4)-deoxycytidine adducts (1.9 and 0.5% of total alkylation, respectively), in addition to the previously identified DNA-adducts. The 3-substituted uracil may have implications for the mutagenicity of SO.  相似文献   

17.
18.
19.
20.
Modification of cytokinins by cauliflower microsomal enzymes   总被引:2,自引:1,他引:2       下载免费PDF全文
Two homozygous mutant lines of barley (Hordeum vulgare L.) R3202 (Lt1b/Lt1b) and R3004 (Lt2/Lt2), are resistant to lysine plus threonine. They contain aspartate kinase isoenzymes with lost or decreased feedback sensitivity to lysine in either isoenzyme AKII (R3202) or isoenzyme AKIII (R3004). A homozygous double mutant line (Lt1b/Lt1b, Lt2/Lt2) has now been constructed that grows vigorously on 8 millimolar lysine, 8 millimolar threonine, and 1 millimolar arginine. Both AKII and AKIII from the double mutant have altered lysine sensitivities, identical to those previously observed in R3202 and R3004, respectively. Aspartate kinase activity in extracts of leaves, roots, and the maturing endosperm of the double mutant was much less sensitive to lysine inhibition than the enzyme in comparable extracts of the parent cv Bomi, suggesting that aspartate kinase is expressed in a similar manner in different tissues of barley.

A further mutant, R2501, resistant to lysine plus threonine has now given rise to a homozygous line (Lt1a/Lt1a), which had previously not been possible. AKII isolated from the homozygous line was completely insensitive to 10 millimolar lysine; however, the combined action of 10 millimolar lysine and 0.8 millimolar S-adenosylmethionine inhibited it by 60%, demonstrating the retention of some of the regulatory characteristics of the wild type enzyme.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号