首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luteal slices obtained from Day-10 cyclic, sexually mature, mixed-breed, superovulated goats were used to study the effects of prostaglandins E(2) and F(2)a (PGE(2) and PGF(2)a) on the release of progesterone. The goats were synchronized for estrus using a single intramuscular injection of 5 mg PGF(2)a given during the mid-luteal phase of the estrous cycle. Multiple follicular growth and superovulation were induced using a treatment regiment of follicle stimulating hormone (FSH) and luteinizing hormone releasing hormone (LHRH) previously standardized in our laboratory (1). The luteal slices were treated with PGE(2) or PGF(2)a at concentrations of 1 and 10 ng/ml each. Untreated luteal slices continued to release significant amounts of progesterone over the entire period of incubation (30 to 360 minutes). There was a progressive increase in progesterone accumulation following treatment with PGE(2) at both concentrations. The mean progesterone values were significantly higher in the PGE(2)-treated groups at all incubation periods than in the controls. Progesterone values at 10 ng/ml were higher (P<0.05) than at 1 ng/ml. Treatment with PGF(2)a decreased (P<0.05) progesterone release at 60 to 360 minutes of incubation compared with that of the corresponding controls for each incubation period. However, there appeared to be no differences (P>0.05) in mean progesterone values between the two concentrations of PGF(2)a. The results of this study showed that PGE(2) enhanced the release of progesterone by caprine luteal tissues, whereas PGF(2)a inhibited its release.  相似文献   

2.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 alpha(PGF2 alpha) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregnancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postestrus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesterone sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uteroovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embryos. Mating had no effect on mean daily concentrations of PGE2 alpha or the patterns of the natural logarithm (1n) of the variance of PGF2 alpha. Ovariectomy resulted in higher mean concentrations and 1n variances of PGF2 alpha on day 13 and lower mean concentrations and 1n variances of PGF2 alpha on days 15 and 16. Replacement with progesterone prevented these changes in patterns of mean concentrations and 1n variances of PGF2 alpha following ovariectomy. It is concluded that progesterone regulates the release of PGF2 alpha from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2 alpha which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

3.
The effects of various prostaglandins on ornithine decarboxylase (ODC) activity in mammary gland explants from mid-pregnant mice have been tested. PGE1, E2 and I2 elicit a concentration-dependent stimulation of ODC activity. The minimally effective concentrations are 0.5 ug/ml for PGE1 and E2, and 50 ug/ml for PGF2 alpha and 6-keto-PGF1 alpha. The PGE1 effect had a time course identical to that of prolactin. The prolactin action on ODC activity was attenuated by indomethacin, an inhibitor of prostaglandin biosynthesis. Arachidonic acid stimulated ODC activity and its effect was abolished by indomethacin. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, potentiated the PGE1 effect on ODC activity. The results suggest that the prostaglandins may modulate prolactin's action on ODC activity via a cAMP dependent mechanism.  相似文献   

4.
Progesterone (P4) was found to interfere directly with the interaction of oxytocin (OT) with its own receptor in bovine endometrium. The aim of these studies was to investigate whether other steroids have a similar effect. Endometrial slices and epithelial endometrial cells from days 14 to 18 of the estrous cycle were used. Progesterone (P4), pregnenolone (P5), 17beta-hydroxyprogesterone (17-OHP4), the P4 receptor antagonist (aP4), and testosterone (T4) did not affect (P > 0.01) basal secretion of PGE2 and PGF 2alpha during 4h of incubation but all steroids inhibited (P < 0.05) OT-stimulated PGF2alpha secretion both from endometrial slices and from dispersed cells. None of the steroids used affected OT-stimulated PGE2 secretion from the cells (P > 0.01). In the next experiment it was studied whether P5, 17-OHP4 and P4 pretreatment for 30min modifies intracellular mobilization of Ca(2+) in response to OT. Oxytocin induced a rapid increase in intracellular Ca(2+)concentrations within 15s, while cells pretreated with steroids this increase occurred later. The total amount of intracellular Ca(2+)concentrations was lower (P < 0.05) in cells preincubated with steroids compared to controls. We conclude that steroids and aP4 are able to suppress OT-stimulated endometrial PGE2 and PGF2alpha secretion via a non-genomic pathway.  相似文献   

5.
Luteal regression is a multistep, prolonged process, and long-term luteal cultures are required for studying it in vitro. Cell suspensions from ovaries of superovulated rats were enriched with steroidogenic cells, seeded on laminin or fibronectin, and maintained in defined medium for up to 10 days. Progesterone secretion was much lower than that of 20alpha-dihydroprogesterone, a product of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). Prolactin added throughout the incubation period gradually increased the percent progesterone out of total progestins to fourfold, while reducing 20alpha-HSD mRNA by 73%. Luteinizing hormone accelerated the establishment of higher percent progesterone by prolactin but by itself had no effect. Prolactin did not increase total progestin production or cytochrome P450 side-chain cleavage (P450(scc)) mRNA. Cell viability was unaffected by prolactin and/or LH. Prostaglandin F2alpha (PGF2alpha) was added 7-8 days after seeding. In prolactin-treated cells, PGF2alpha reduced steroidogenesis after 4-45 h, and at 45 h total progestins and P450(scc) mRNA were reduced by 45%. At 8-45 h PGF2alpha reduced the percent progesterone out of total progestins, and at 45 h 20alpha-HSD mRNA was doubled. In contrast, in prolactin-deprived cultures, PGF2alpha had little effect on total progestins or 20alpha-HSD mRNA but doubled P450(scc) mRNA. Phospholipase C activity was stimulated by PGF2alpha regardless of prolactin. Thus, when prolactin-treated, our cultures are a good model for mature corpora lutea challenged with PGF2alpha; the finding that without prolactin PGF2alpha has an alternative set of actions could help in identifying the signaling pathways of PGF2alpha responsible for its luteolytic effects.  相似文献   

6.
Progesterone and interferon-like trophoblastic proteins modulate prostaglandin (PG) synthesis from endometrium in early ovine and bovine pregnancy. Enriched epithelial cells were prepared from human endometrium removed in the proliferative phase of menstrual cycle (n = 8). Progesterone at a concentration of 1 microM suppressed PGE release from the cells during the first 24 hours in culture. After 48 hours in culture progesterone at a dose of 100 nM and 1 microM suppressed both the release of PGF2 alpha and PGE from the cells and this suppression was maintained for a further two days. Addition of exogenous 30 microM arachidonic acid (AA) abolished this effect of progesterone on both PGF2 alpha and PGE release. Interferon alpha-2 did not suppress the basal release of PGF2 alpha nor PGE. In the presence of progesterone, interferon alpha-2 attenuated the progesterone mediated suppression of PGF2 alpha but not PGE release from endometrial cells. These findings suggest that progesterone suppresses the basal release of PGs from human endometrium, but unlike the sheep, interferon alpha-2 does not exert this action on human endometrium.  相似文献   

7.
The present experiments were conducted to test whether the ratio of PGE2:PGF2alpha affects steroid secretion by porcine luteal cells. We examined the effect of separate and combined treatment with PGE2 and PGF2alpha on progesterone and estradiol secretion. Luteal cells were collected at three different stages of the luteal phase (1-3 days after ovulation; 10-12 days after ovulation and 14-16 days after ovulation). PGE2 alone in a dose dependent manner increased progesterone production by cells collected from mature corpora lutea. On the other hand, PGF2alpha in a dose dependent manner decreased progesterone secretion by cells of the same origin. Progesterone secretion by cells isolated from mature and regressing corpora lutea and treated with both prostaglandins increased in comparison to PGF2alpha-treated cultures. However, in cells collected from regressing corpora lutea PGE2 and PGF2alpha in a ratio of 2:1 and 4:1 increased estradiol production when compared to control and both ratios increased estradiol secretion in comparison to PGF2alpha-treated cells. These data 1) confirm the luteotropic effect of PGE2 and the luteolytic effect of PGF2alpha; 2) demonstrate that when the ratio of PGE2 to PGF2alpha changed from 1:1 to 2:1 or 4:1 cells were protected against the inhibitory effects of PGF2alpha on progesterone secretion by cells collected during the mid- and late luteal phase; and 3) suggest that elevated estradiol production by luteal cells, isolated during late luteal phase, under the influence of increased doses of PGE2 may serve as an additional source of estradiol to blastocysts, during early pregnancy in the pig.  相似文献   

8.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

9.
Central (intracerebroventricular) injections of PGE2, PGF2 alpha caused dose dependent increases in oxygen consumption (VO2) and colonic temperature in conscious rats. The effects of combined injection of maximal doses of CRF and PGE2 were additive, whereas PGF2 alpha and CRF were not. A CRF receptor antagonist, (alpha helical CRF 9-41, 25 micrograms icv) markedly inhibited the effects of PGF2 alpha on VO2 and temperature, but did not affect the actions of PGE2. These data indicate that PGF2 alpha and PGE2 stimulate thermogenesis by two different mechanisms, the former depending on CRF release. PGF2 alpha may be involved in the thermogenic actions of interleukin-1 beta which is also a potent thermogenic agent acting via CRF.  相似文献   

10.
Prostaglandin (PG) biosynthesis by trypsin-dispersed cat adrenocortical cells was studied by radioimmunoassay (RIA). Parallel assays of incubation media using PGF2alpha and PGF1alpha antisera established that PGF2alpha is the primary PGF released by feline cortical cells. Following the reduction of PGE to PGF with sodium borohydride (NaBH4) these same two antisera were also used to identify PGE2 as the primary PGE released. RIA using a PGE antiserum confirmed the presence of PGE in the incubation medium. Steroidogenic concentrations of ACTH (50-250muU) enhanced PGE and PGF release, and indomethacin suppressed the ACTH-facilitated release. These studies provide additional evidence for ACTH-induced PG synthesis by feline cortical cells, and support the hypothesis that PGs play some role in the steroidogenic action of ACTH.  相似文献   

11.
Prostaglandins E1, E2, and F2alpha (PGE1, PGE2, and PGF2alpha) were shown to inhibit the growth of mouse leukaemia lymphoblasts L5178Y in culture. The effects of PGE1 and PGE2 were greater than that of PGF2alpha. PGE1 and PGE2, at the concentration of 100 mug per ml showed significant inhibitory effects on the rates of incorporation of tritiated thymidine, uridine and leucine. At concentrations of 50 and 25 mug per ml, there was significant inhibition of thymidine and uridine incorporation, but not of leucine, PGF2alpha showed significant inhibition of thymidine and uridine incorporation but not leucine incorporation, in all 3 concentrations studied (100, 50, and 25 mug/ml). The ability of the cells to form colonies in soft agar was significantly inhibited by PGE1 and PGE2 at concentrations as low as 1-8 mug/ml. For F2alpha, however, a concentration as high as 56mug/ml was required to show inhibitory effect, but at 1-8 mug/ml it was found to be stimulatory.  相似文献   

12.
The effects of prostaglandins (PGs) E1 (PGE1), E2 (PGE2) and F2 alpha (PGF2 alpha) on cyclic 3',5'-adenosine monophosphate (cAMP) production and intracellular Ca mobilization were examined in smooth muscle cells of chicken uterus grown in primary culture. At subnanomolar concentrations, both PGE1 and PGE2 significantly suppressed cAMP levels. However, at higher concentrations (0.1-100 microM), both agonists caused a dose-related increase in cAMP production. PGF2 alpha, on the other hand, had no effect on cAMP production. Forskolin (1-100 microM), which also stimulated cAMP production in a dose-dependent fashion, potentiated the effects of both PGE1 and PGE2. In digitonin-permeabilized uterine cells preloaded with 45Ca2+, the addition of PGF2 alpha caused a biphasic 45Ca2+ efflux. There was a small but significant 45Ca2+ release (10.0 +/- 1.5%) within 30 s (rapid phase), followed by a larger one (32.0 +/- 2.0%) within 5 min (slow phase). PGE2, at doses above 1 nM (which significantly increased cAMP accumulation), promoted 45Ca2+ sequestration. This action of PGE2 was observed as early as 1 min and was complete by 5 min. In addition, 0.001 nM PGE2 (a dose that was ineffective on 45Ca2+ mobilization) enhanced PGF2 alpha-induced 45Ca2+ mobilization from 22.5 +/- 5% to 57.0 +/- 3.5%. These results show that PGs of the E series have distinctly different effects on cAMP production and intracellular Ca mobilization. PGF2 alpha action may be linked directly to intracellular Ca mobilization, whereas the effects of PGE may be exerted at multiple sites depending on its local concentration. At low concentrations, its action may be mediated by the suppression of cAMP levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle.  相似文献   

14.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

15.
The effects of PGE2, PGF2alpha, trilostane, RU-486, PA, INDO, MER-25, PGE2, or PGF2alpha + PA on secretion of progesterone, PGE2, or PGF2alpha by bovine corpora lutea (CL) of mid-pregnancy in vitro for 4 and 8 hr was examined. Secretion of PGE2 and PGF2alpha increased with time in culture (P < or = 0.05). PGE2 and PGE2 + PA increased (P < or = 0.05) secretion of progesterone at 4 and 8 h, progesterone secretion was increased (P < or = 0.05) at 4 h; but not at 8 h (P > or = 0.05) by trilostane, mifepristone, PGF2alpha and PGF2alpha + PA, and was decreased at 8 h by PGF2alpha and PGF2alpha + PA. Indomethacin decreased (P < or = 0.05) secretion of PGE2, PGF2alpha, and progesterone at 4 and 8 h. Trilostane, PA, PGF2alpha, RU-486 and PGF2alpha + PA increased (P < or = 0.05) PGE2 at 4 h only. Palmitic acid decreased (P < or = 0.05) PGF2alpha at 4 h, while trilostane, RU-486, or MER-25 did not affect (P < or = 0.05) PGE2 of PGF2alpha secretion. It is concluded that PGE2 of luteal tissue origin is the luteotropin at mid-pregnancy in cows. Also, it is suggested that PA may alter progesterone secretion by affecting the inter conversion of PGE2 and PGF2alpha.  相似文献   

16.
Estradiol-17 beta increases the production of prostaglandin F2 alpha (PGF2 alpha) in long term monolayer cell cultures of the human endometrium in a dose dependent manner. Progesterone in pharmacological dosage stimulates the syntheses of PGF2 alpha and of prostaglandin E2 (PGE2). The synthesis of prostaglandin I2 (PGI2) is not influenced by sex steroids in long term monolayer cell cultures of the human endometrium.  相似文献   

17.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

18.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

19.
Prostaglandin (PG) biosynthesis by trypsin-dispersed cat adrenocortical cells was studied by radioimmunoassay (RIA). Parallel assays of incubation media using PGF and PGF antisera established that PGF is the primary PGF released by feline cortical cells. Following the reduction of PGE to PGF with sodium borohydride (NaBH4) these same two antisera were also used to identify PGE2 as the primary PGE released. RIA using a PGE antiserum confirmed the presence of PGE in the incubation medium. Steroidogenic concentrations of ACTH (50–250μU) enhanced PGE and PGF release, and indomethacin suppressed the ACTH-facilitated release. These studies provide additional evidence for ACTH-induced PG synthesis by feline cortical cells, and support the hypothesis that PGs play some role in the steroidogenic action of ACTH.  相似文献   

20.
The effects of various concentrations of prolactin and growth hormone on the rates of [3H]-uridine incorporation into RNA, [3H]-leucine incorporation into casein, and ornithine decarboxylase (ODC) activity were determined in mouse mammary gland explants. The lowest concentrations of prolactin which produced significant responses were between 5 and 25 ng/ml. Growth hormone, in contrast, produced significant response at concentrations between 250 and 1,000 ng/ml. The prolactin actions on RNA and casein synthesis were essentially all-or-none type responses, i.e. the magnitude of the responses were maximal at about 10 ng/ml prolactin. The action of prolactin on ODC activity was quite different; a concentration-response relationship was observed with prolactin at concentrations from 10 t 250 ng/ml. It is apparent from these studies that different concentrations of prolactin are required to produce optimal actions on different biochemical parameters in cultured mammary tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号