首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Circulatory responses to selective afferent stimulation of medullated and non-medullated fibers in the left aortic nerve were followed in terms of changes in arterial pressure, heart rate, contractile force of the left ventricular fragment and vascular resistance of the hind limb of cats with an opened thorax. Stimulation of the medullated afferents induced a reflex fall of blood pressure mainly by means of decrease in the peripheral vascular resistance, while activation of non-medullated fibers influenced the heart work, i. e. decreased heart rate and myocardial contractile force.  相似文献   

2.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

3.
To determine the biochemical and hemodynamic responses to aortic ligation, and to assess the survival rate after the induction of hypertension, 90 normotensive rats were subjected to surgical constriction of the abdominal aorta. Mortality, left ventricular hemodynamics, myocardial biochemical assays, and plasma renin assays were determined 1 week, 1 month, 3 months, or 1 year later. Mortality was greatest between 1 week and 3 months after aortic ligation, during which plasma renin activity was significantly elevated. The rate of left ventricular pressure rise, contractile index, and myocardial alpha-adrenoceptor number were increased at 1 month, but were comparatively depressed at 3 months after the operation, suggesting that the heart was in failure at this time. At 1 year after ligation, hemodynamic and biochemical parameters continued toward normalization. Our data suggest that, in this rodent model, cardiac pump failure occurs through a combination of time-dependent, pressure-induced mechanical adaptations and myocardial biochemical changes that involve both the renin-angiotensin and sympathetic nervous systems. The observed relationship between mortality, myocardial hemodynamics, and biochemical parameters may be used for additional basic research investigations concerning the early periods of cardiac failure.  相似文献   

4.
In 17 canine heart-lung preparations the dependence of frequency potentiation of the right and left ventricular myocardium on the basic inotropic state of the heart was investigated. The effect of unipolar stimulation of the right atrium on dP/dt max in both ventricles was measured. The aortic pressure was maintained constant. Shortly after isolation of the heart, a stepwise increase of rate from 140 to 200 beats/min only had a very weak influence on left ventricular dP/dt max. With deterioration of the myocardium the frequency potentiation of dP/dt max increased considerably. End-diastolic pressure regularly decreased with rising cardiac frequency. Since the real positive inotropic effect is masked by the concomitant fall in diastolic loading, the end-diastolic pressure was maintained constant in a second group of 8 hearts during rate variation. The most pronounced inotropic effect was now found shortly after isolation of the heart. A rate increase of 30 beats/min resulted in a 20% rise of dP/dt max. The frequency potentiation decreased with deterioration of the heart resulting in a 12% dP/dt max increase at an estimated inotropic state of 50% of control. When the contractile state of the heart was improved above the control state by calcium application the frequency potentiation of the myocardium decreased. In the right ventricle similar results were obtained except for the fact that no significant correlation between the steepness of the frequency characteristics and the contractile state of the heart could be found when the end-diastolic pressure was kept constant.  相似文献   

5.
To study systolic pressure gradients developed between the left ventricular wall, its chamber, and the aortic root, in one group of dogs left ventricle ventral wall intramyocardial pressure, left ventricular outflow tract pressure, and aorta pressure were compared with aortic flow as well as left ventricular dimension changes during control conditions as well as during positive intropic states induced by isoproterenol, stellate ganglion stimulation, and noradrenaline. In another group of dogs systolic pressures in the ventral wall of the left ventricle, the main portion of the left ventricular chamber, and the aorta were compared with aortic flow during similar interventions, before and after the administration of phentolamine. Pressure gradients between the wall of the left ventricle and the outflow tract of the left ventricle were minimal during control states, but during the three positive inotropic states were increased significantly. In contrast, pressure gradients between the outflow tract of the left ventricle and the aortic root were insignificant during positive inotropic states; those between the wall and main portion of the chamber were only significantly different during left stellate ganglion stimulation. The data derived from these experiments indicate that useful peak power output of the left ventricle (systolic aortic pressure X flow) is unchanged following isoproterenol infusion, but is increased by stellate ganglion stimulation and noradrenaline. The useful peak power output index (an index of left ventricular efficiency derived by dividing useful peak power output by peak intramyocardial pressure) was reduced more by isoproterenol than the other two interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
It has been reported that 30-40% of patients with aortic stenosis are hypertensive. In such patients, the left ventricle faces a double (i.e. valvular and vascular) pressure overload, which results in subsequent wall volume hypertrophy. From a clinical standpoint, it is difficult to separate the respective contributions of aortic stenosis and systemic hypertension to left ventricular burden and patient's symptoms and thus to predict whether valve replacement would be beneficial. The objective of this theoretical study was therefore to investigate the relative effects of valvular and vascular afterloads on left ventricular hypertrophy. We used a ventricular-valvular-vascular mathematical model in combination with the Arts' model describing the myofiber stress. Left ventricular wall volume was computed for different aortic blood pressure levels and different degrees of aortic stenosis severity. Our simulations show that the presence of concomitant systemic hypertension has a major influence on the development of left ventricular hypertrophy in patients with aortic stenosis. These results also suggest that mild-to-moderate aortic stenosis has a minor impact on left ventricular wall volume when compared with hypertension. On the other hand, when aortic stenosis is severe, wall volume increases exponentially with increasing aortic stenosis severity and the impact of aortic stenosis on left ventricular hypertrophy becomes highly significant.  相似文献   

7.
Whether myocardial contractile impairment contributes to orthostatic intolerance (OI) is controversial. Accordingly, we used transient bilateral carotid occlusion (TBCO) to compare the in vivo pressor, chronotropic, and inotropic responses (parts 1 and 2) to open-loop selective carotid baroreceptor unloading in anesthetized mice. In part 3, in vitro myocyte responses to isoproterenol in mice exposed to hindlimb unweighting (HLU) for approximately 2 wk were determined. Heart rate (HR) and mean arterial pressure (MAP) responses to TBCO were measured. In control mice, TBCO increased HR (15 +/- 2 beats/min, P < 0.05) and MAP (17 +/- 2 mmHg, P < 0.05). These responses were markedly potentiated in denervated control (DC) mice, in which the aortic depressor nerve and sympathetic trunk were sectioned before measurement. Baroreflex responses to TBCO were eliminated by blockade with hexamethonium bromide (10 microg/kg). In HLU (denervated) mice, HR and MAP responses were reduced approximately 70% compared with DC mice. In part 2, myocardial contractile responses to TBCO were measured with a left ventricular micromanometer-conductance catheter. TBCO in DC mice increased the slope of the end-systolic pressure-volume relation (end-systolic elastance) by 86 +/- 13%. This inotropic response was attenuated (14 +/- 10%, P < 0.005) after HLU. In part 3, contractile responses to isoproterenol were impaired in myocytes isolated from HLU mice. In conclusion, selective carotid baroreceptor unloading stimulates HR, blood pressure, and myocardial contractility, and HLU attenuates each response. These findings have important implications for the management of OI in astronauts, the elderly, and individuals subjected to prolonged bed rest.  相似文献   

8.
A method is presented in this paper for the estimation of aortic distensibility and instantaneous systolic left ventricular volume in living man in the absence of valvular regurgitation. The method is based on a simple, elastic-reservoir-theory, model of the circulatory system and requires no assumption concerning the geometry of the left ventricle. The input data required for this mathematical model consists of stroke volume, an aortic pressure record over an entire cardiac cycle and end diastolic ventricular volume. The procedure developed here for the estimation of aortic distensibility and instantaneous left ventricular volume is very practical from a computational point of view. It is believed that it will yield useful information concerning two clinically important quantities which cannot be measured directly in living man and will facilitate the study of correlations between these quantities and various physiological and pathological states. Results are presented in the paper for six cardiac patients. The requisite data in each case was obtained in the Cardiac Research Laboratory at the Peter Bent Brigham Hospital.  相似文献   

9.
To determine whether changes in heart rate and aortic systolic pressure contribute equally to the determination of left ventricular myocardial oxygen consumption, we independently varied heart rate and pressure and compared the resultant oxygen consumption for similar rate-pressure products. In 6 young lambs which underwent atrioventricular node ablation, we varied heart rate by ventricular pacing at 250 beats/min, 300 beats/min, and 120 beats/min while aortic pressure remained stable and varied aortic systolic pressure by infusion of phenylephrine (to 132 +/- 15 mm Hg and 155 +/- 14 mm Hg) and by infusion of sodium nitroprusside (to 79 +/- 6 mm Hg) while heart rate was maintained stable at 200 beats/min. The 3 levels of change in aortic systolic pressure were chosen so that the ratepressure product during the pressure changes matched the rate-pressure product during the heart rate changes. We found that left ventricular myocardial oxygen consumption was the same at all 3 levels of the rate-pressure product whether heart rate was changed and pressure remained stable or pressure was changed and heart rate remained stable. Also, the correlation between oxygen consumption and the rate-pressure product was similar for both heart rate and pressure changes. During nitroprusside infusion at a fixed heart rate, oxygen extraction was significantly lower than during pacing at a heart rate of 120 beats/min when the rate-pressure product was comparable because of the direct vasodilatory effects of nitroprusside. We conclude that heart rate and aortic systolic pressure contribute equally to left ventricular myocardial oxygen consumption at the same rate-pressure product, even though there may be differences in myocardial blood flow and oxygen extraction.  相似文献   

10.

The course of diseases such as hypertension, systolic heart failure and heart failure with a preserved ejection fraction is affected by interactions between the left ventricle (LV) and the vasculature. To study these interactions, a computationally efficient, biophysically based mathematical model for the circulatory system is presented. In a four-chamber model of the heart, the LV is represented by a previously described low-order, wall volume-preserving model that includes torsion and base-to-apex and circumferential wall shortening and lengthening, and the other chambers are represented using spherical geometries. Active and passive myocardial mechanics of all four chambers are included. The cardiac model is coupled with a wave propagation model for the aorta and a closed lumped-parameter circulation model. Parameters for the normal heart and aorta are determined by fitting to experimental data. Changes in the timing and magnitude of pulse wave reflections by the aorta are demonstrated with changes in compliance and taper of the aorta as seen in aging (decreased compliance, increased diameter and length), and resulting effects on LV pressure–volume loops and LV fiber stress and sarcomere shortening are predicted. Effects of aging of the aorta combined with reduced LV contractile force (failing heart) are examined. In the failing heart, changes in aortic properties with aging affect stroke volume and sarcomere shortening without appreciable augmentation of aortic pressure, and the reflected pressure wave contributes an increased proportion of aortic pressure.

  相似文献   

11.
Although slightly affected by alterations in preload, the maximum first derivative of left ventricular pressure with respect to time, Max(dP/dt), is widely regarded as a simple and convenient index of cardiac contractility for clinical use. The feasibility of noninvasive, hence repeatable, measurement of Max(dP/dt) will certainly lead to re-evaluation of its usefulness. Max(dP/dt) is given by the following equation: Max(dP/dt) = rho c Max(du/dt), where rho is the blood density, c the pulse wave velocity, and mu the flow velocity in the aorta. This equation has been previously validated in animal experiments and has now been applied to the clinical setting for the first time. In 20 patients without aortic stenosis, left ventricular pressure was measured with a catheter-tip micromanometer, aortic ejection flow velocity was measured by Doppler echocardiography, and pulse wave velocity by mechanocardiography or Doppler echocardiography. Then, delta c Max (du/dt was calculated from the measured data and compared with measured Max (dP/dt). A significant positive correlation was found between them (rho c Max (du/dt) = 0.96 x Max (dP/dt) + 6.52, r = 0.83, p < 0.001). In 11 patients with hypertension, rho c Max (du/dt) was obtained before and after long-term (average 13.1 months) treatment with antihypertensive drugs. In spite of the expected reduction in blood pressure and the regression of left ventricular mass, rho c Max (du/dt) remaioned unchanged. In 9 patients with dilated cardiomyopathy, the effects of beta 1-agonist were tested at the beginning of therapy (30 mg/day denopamine) and 6 months later. The increase in rho c Max (du/dt) observed 1 hour after oral administration of he drug had not changed significantly 6 months later. We conclude that the index rho c Max (du/dt), is useful in assessing the contractile state of the left ventricle noninvasively.  相似文献   

12.
The Tei index is clinically useful to quantify left ventricular (LV) function, but it requires sequential Doppler recordings from two different views. A related myocardial performance index (MPI) using tissue Doppler (TD) can be rapidly calculated from a single beat; however, its ability to quantify contractility and the effects of acute changes in loading have not been determined. Our aim was to test the hypothesis that TD MPI can quantify contractile state but is affected by acute alterations in loading, using LV pressure-volume relations in an animal model. Eight dogs were studied by using mitral annular TD, high-fidelity pressure, and conductance catheters. TD MPI was calculated as (a' - b')/b', where a' was the duration of mitral annular velocity during diastole and b' was the duration of the systolic wave. End-systolic elastance (Ees), the time constant of isovolumic relaxation (tau), and peak positive and negative first derivative of pressure (dP/dtmax and dP/dtmin, respectively) were used as measures of LV function. Data were obtained at baseline, at dobutamine and esmolol infusion to alter contractile state, and at inferior vena cava and aortic occlusion to alter preload and afterload. TD MPI decreased from 0.83 (SD 0.19) to 0.62 (SD 0.20) with dobutamine and increased to 1.19 (SD 0.26) with esmolol. TD MPI significantly correlated with dP/dtmax (r = -0.76), Ees (r = -0.68), dP/dtmin (r = 0.82), and tau (r = 0.78); however, it was affected by acute decreases in preload [from 0.83 (SD 0.19) to 1.09 (SD 0.36)] and acute increases in afterload [to 1.23 (SD 0.17)]. All the above increases and decreases and r values were significant (P < 0.05 vs. baseline). In conclusion, TD MPI can rapidly quantify alterations in LV contractile state but is affected by acute alterations in preload and afterload.  相似文献   

13.
Left ventricular–arterial (VA) coupling has been recognized to be of great significance in understanding both the global and local mechanical performance of the circulatory system. In this study, a closed-loop multi-scale model of the human cardiovascular system is established for the purpose of studying the coupled VA hemodynamic changes during aging. Obtained results show that age-associated changes in arterial properties have some negative but relatively small influences on left ventricular (LV) mechanical performance, whereas they progressively increase LV and aortic systolic pressures, and aortic pulse pressure during aging. Wave analysis reveals that increased aortic characteristic impedance and premature wave reflection induced by arterial stiffening are two coexistent factors responsible for aortic systolic hypertension and increased aortic pulse pressure at old age. In contrast, aortic dilatation can partly counteract the negative influences of arterial stiffening. Coupled LV-systolic and arterial stiffening (a constant VA coupling index) well preserves LV mechanical performance given normal LV diastolic function during aging, but with a concomitant further elevation of LV and aortic systolic pressures. Furthermore, it is found that the states of arterial, LV-systolic and diastolic stiffness can be distinguished by investigating the sensitivity of LV-systolic pressure to various cardiac indices.  相似文献   

14.
In patients with aortic stenosis, the left ventricular afterload is determined by the degree of valvular obstruction and the systemic arterial system. We developed an explicit mathematical model formulated with a limited number of independent parameters that describes the interaction among the left ventricle, an aortic stenosis, and the arterial system. This ventricular-valvular-vascular (V(3)) model consists of the combination of the time-varying elastance model for the left ventricle, the instantaneous transvalvular pressure-flow relationship for the aortic valve, and the three-element windkessel representation of the vascular system. The objective of this study was to validate the V(3) model by using pressure-volume loop data obtained in six patients with severe aortic stenosis before and after aortic valve replacement. There was very good agreement between the estimated and the measured left ventricular and aortic pressure waveforms. The total relative error between estimated and measured pressures was on average (standard deviation) 7.5% (SD 2.3) and the equation of the corresponding regression line was y = 0.99x - 2.36 with a coefficient of determination r(2) = 0.98. There was also very good agreement between estimated and measured stroke volumes (y = 1.03x + 2.2, r(2) = 0.96, SEE = 2.8 ml). Hence, this mathematical V(3) model can be used to describe the hemodynamic interaction among the left ventricle, the aortic valve, and the systemic arterial system.  相似文献   

15.
The left ventricle may be described as a time, volume and flow dependent pressure generator. First, isovolumic pressure is measured at various end-diastolic volumes. Next, pressure is adjusted to account for small changes accompanying ejection, denoted the ejection effect. The resulting analytical function can describe pressure generation and ventricular outflow of the ventricle under a wide range of contractile and vascular conditions. This paradigm is unique in separating isovolumic from ejecting ventricular properties, as well as ventricular from vascular conditions.  相似文献   

16.
In this paper a three-dimensional continuum model of a mammalian left ventricle is formulated. The stresses in the model satisfy the conditions of zero stress on the outer (epicardial surface-representing) boundary. The strains of the model are obtained from the actual dynamic geometry measurements (obtained from cineangiocardiography). Since the left ventricular muscle is incompressible, the dilatational strain is zero and hence the (three-dimensional) deviatric stress components are related to the corresponding strain components by Maxwell and Voigt rheological model analogues of one-dimensional systems; the parameters of the model are series and parallel elastic (SE, PE) elements and the contractile element (CE) (representing the sarcomere). The incorporation of the rheological features of the cardiac muscle into the three-dimensional constitutive equations (for the three-dimensional continuum model of the left ventricle) is a feature of this paper. A procedure is presented to determine the parameters of the constitutive equations (i.e., the SE, PE, and the parameters of the force-velocity relation for the CE) for the left ventricle of a subject from data on the dimensions and chamber pressure of the left ventricle. The values of these parameters characterize the rheology of the left ventricular muscle of the subject. In order to demonstrate clinical application of the analyses, in vivo data of the subjects' left ventricular pressure and dimensions are obtained, and the analyses are applied to the data to determine (for each subject) the values and characteristics of the elastic elements and CEs.  相似文献   

17.
A model of the ejecting left ventricle is developed in which ventricular elastance as a function of time is optimized with respect to a simple performance index selected on an energetic basis. The model correctly predicts a number of well known experimental findings concerning the effects of preload and afterload conditions and varying system parameters on left ventricular pressure and elastance waveforms and on the ejection period. The results characterize ventricular systolic elastance as dependent on both end-diastolic volume and mean aortic pressure.  相似文献   

18.
Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.  相似文献   

19.
Besides the reduction of angiotensin II formation, locally increased kinins may play a role in the cardiovascular action of angiotensin converting enzyme (ACE) inhibitors.To characterize the contribution of bradykinin to the effects of ACE inhibition by captopril on the development of pressure overload hypertrophy, sham-operated rats and rats with ascending aortic constriction were treated with captopril (80 mg/kg/day) or captopril and B2-kinin receptor antagonist HOE 140 (0.5 mg/kg/day) for 7 weeks. Left ventricular mass and geometry, hydroxyproline concentration and myosin isozymes (marker of a fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and diastolic pressure-volume relationship was shifted to smaller volumes. Signs of congestive heart failure were not apparent. The hydroxyproline concentration remained unaltered. However, the proportion of isomyosin V3 was increased (p < 0.05). Administration of captopril reduced (p < 0.05) systolic blood pressure, body and cardiac weight in all treated rats. The reduction of left ventricular weight was disproportionally higher in pressure overloaded rats, thus the relative left ventricular weight decreased by 15% (p < 0.05). Captopril augmented the isomyosin V1 expression (p < 0.05) in sham operated as well as pressure overloaded rats. The isomyosin V1 percentage was inversely related to the relative left ventricular weight. Two different (p < 0.05) correlation lines were detected for untreated and captopril treated rats. None of captopril associated effects were removed by simultaneously administered B2 kinin receptor antagonist HOE 140.Thus, stimulation of bradykinin B2 receptor appears not to mediate the effects of captopril on cardiac growth and contractile proteins during the development of pressure overload hypertrophy.  相似文献   

20.
The present study was designed to induce massive accumulation of calcium in the myocardium and to evaluate the effect of calcium overload on myocardial contractile function and biochemical activity of cardiac subcellular membranes. Rats were treated with an oral administration of 500,000 units/kg of vitamin D3 for 3 consecutive days, and their hearts were sampled on the 5th day for biochemical analysis. On the 4th and 5th days, heart rate, mean aortic pressure, left ventricular systolic pressure and left ventricular dP/dt were significantly lowered in vitamin D3-treated rats, demonstrating the existence of appreciable myocardial contractile dysfunction. Marked increases in the myocardial calcium (67-fold increase) and mitochondrial calcium contents (24-fold increase) were observed by hypervitaminosis D3. Mitochondrial oxidative phosphorylation and ATPase activity were significantly reduced by this treatment. A decline in sarcolemmal Na+, K+-ATPase activity was also observed, while relatively minor or insignificant changes in calcium uptake and ATPase activities of sarcoplasmic reticulum were detectable. Electron microscopic examination revealed calcium deposits in the mitochondria after vitamin D3 treatment. The results suggest that hypervitaminosis D3 produces massive accumulation of calcium in the myocardium, particularly in the cardiac mitochondrial membrane, which may induce an impairment in the mitochondrial function and eventually may lead to a failure in the cardiac contractile function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号