首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymology and kinetics of tyrosine phenol lyase (TPL) from Erwinia herbicola, and tyrosine decarboxylase (TDC) from Streptococcus faecalis have been investigated for potential use in a coimmobilized multienzyme biocatalytic system for the production of dopamine. In this multienzyme biotransformation using whole cells optimized for each of the respective enzymes, TPL catalyzes the production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) from catechol, pyruvate, and ammonium, and this is subsequently decarboxylated by TDC to produce dopamine. Performing the reactions simultaneously, thereby removing L-dopa, is one option for overcoming the TPL equilibrium constraints. The enzymes have different optimal pH values, so the reaction kinetics at a compromise pH of 7.1, where both enzymes could be operated simultaneously, were investigated. For the concentration range investigated, TPL followed pseudo-first-order kinetics with respect to catechol, pyruvate, and ammonium. TDC exhibited significant product inhibition as well as inhibition by combinations of catechol and pyruvate.  相似文献   

2.
The whole cell tyrosine phenol-lyase (TPL, E.C. 4.1.99.2) activity of Erwinia herbicola (ATCC 21434) was microen-capsulated. We studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 degrees C to 32 degrees C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 degrees C the cells grow rapidly, but they also enter the death phase rapidly. There is only limited growth of E. herbicola at 42 degrees C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 +/- 100 mum, mean +/- std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of-the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K(M) of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K(M) for phenol is 0.5 mM. The apparent K(M) values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Calcium alginate gel (CAG) that withstands phosphate ions in the medium was prepared by reinforcing a network structure of the gel with a polyelectrolyte complex (PEC) consisting of potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide. The PEC-stabilized CAG beads were used as a supporting matrix for the coimmobilization of Nitrosomonas europaea ATCC 25978 cells and Paracoccus denitrificans IFO 12442 cells. The coimmobilized cells were aerobically cultured on a medium containing 3 mM of phosphate ions, using (NH4)2SO4 as a substrate and ethanol as a carbon source. Ammonia was consumed without forming nitrite, indicating the concurrence of nitrification and denitrification in the same system. No breakage of the gel beads was observed during the cultivation. Repeated aerobic cultivation using a column packed with beads of coimmobilized cells had stable initial activity for at least one month.  相似文献   

4.
Mastore M  Kohler L  Nappi AJ 《The FEBS journal》2005,272(10):2407-2415
The synthesis and involvement of H(2)O(2) during the early stages of melanogenesis involving the oxidations of DOPA and dopamine (diphenolase activity) were established by two sensitive and specific electrochemical detection systems. Catalase-treated reaction mixtures showed diminished rates of H(2)O(2) production during the autoxidation and tyrosinase-mediated oxidation of both diphenols. Inhibition studies with the radical scavenger resveratrol revealed the involvement in these reactions of additional reactive intermediate of oxygen (ROI), one of which appears to be superoxide anion. There was no evidence to suggest that H(2)O(2) or any other ROI was produced during the tyrosinase-mediated conversion of tyrosine to DOPA (monophenolase activity). Establishing by electrochemical methods the endogenous production H(2)O(2) in real time confirms recent reports, based in large part on the use of exogenous H(2)O(2), that tyrosinase can manifest both catalase and peroxidase activities. The detection of ROI in tyrosinase-mediated in vitro reactions provides evidence for sequential univalent reductions of O(2), most likely occurring at the enzyme active site copper. Collectively, these observations focus attention on the possible involvement of peroxidase-H(2)O(2) systems and related ROI-mediated reactions in promoting melanocytotoxic and melanoprotective processes.  相似文献   

5.
The development of a coimmobilized mixed culture sys tem of aerobic and facultative anaerobic microorganisms in Ca-alginate gel beads and the production of useful metabolites by the system were investigated. A coimmobilized mixed culture system of Aspergillus awamori (obligate aerobe) and Saccharomyces cerevisiae (facultative anaerobe) in Ca-alginate gel beads was used as a model system, and ethanol production from starch by the system was used as a model production. Mold Asp. awamori is an amylolytic microorganism while yeast S. cerevisiae is an ethanol producer. The two microorganisms grew competitively in the oxygen-rich surface area of the gel beads because they had similar oxygen demands in aerobic culture conditions. Neither microorganism exhibited "habitat segregation" in the gel beads and leaked yeast cells grew aerobically without ethanol production in the broth. Ethanol productivity was low under these conditions.A more desirable coimmobilized mixed culture system of Asp. awamori and S. cerevisiae was established by adding Vantocil IB (a biocidal compound) to the production medium. The antimicrobial activity of Vantocil IB was more effective with S. cerevisiae than with Asp. awamori, so that a dense mycelial layer of Asp. awamori formed in the surface of the gel beads While S. cerevisiae grew densely in the more inner areas of the gel beads. Also, yeast cell leakace was repressed and ethanol productivity was improved. The system with Vantocil IB produced ethanol of 4.5 and 12.3 g/L from 16 and 40 g/L starch, respectively. A continuous culture using this system with Vantocil IB was also carried out, and a stable steady state could be maintained for six days without leakage of yeast cells and contamination. The selection of a factor suitable for producing "habitat segregation" enabled the development of a coimmobilized mixed culture system of an aerobe and a facultative anaerobe. In this study, total habitat segregation was used to denote a tendency to exhibit denser growth in different parts of one gel bead.  相似文献   

6.
The activity of tyrosine decarboxylase (TDC) and dopa decarboxylase (DDC) was studied in adults of two lines of Drosophila virilis,contrasting in their reaction to stress conditions. Differences were found in the activity of both enzymes between individuals of the examined lines. Genetic analysis of these differences was made. Each of the two enzymes was found to be controlled by a single gene or, possibly, by a block of closely linked genes. The gene responsible for TDC activity is located on one of the autosomes (excluding chromosome II). DDC activity in D. virilisis regulated by a gene located, apparently, on chromosome II. Adults of the line responding to stress by a stress reaction (r-line) were shown to react to a short-term heat stress (38°C, 60 min) by a decrease in TDC activity. TDC activity in flies of the line incapable of the stress reaction (nr-line) did not alter in such conditions. DDC activity of adults of both lines was found to be unchangeable under stress conditions.  相似文献   

7.
Three types of coimmobilized methanogenic and methanotrophic bacterial beads – Ca-alginate, Ba-alginate, and Ca-alginate chitosan – were used for tetrachloroethene (PCE) degradation. For the purpose of effective preparation of coimmobilized bacterial beads, the diameter and broken-loading of beads were measured. The activity tests to find the optimal bacteria concentration in the bead were performed. It was found that Ba-alginate beads had superiority in bacterial growth and the degree of strength of beads from the diameter and broken-loading tests. Also, it was shown that it is most effective to add 200 mL of methanogens into 500 mL of 2% alginate solution and 20 mL of methanotrophs into 500 mL to 2% alginate solution. When methanogens and methanotrophs were applied with the Ba-alginate bead in the actual dechlorination of PCE, the biological PCE dechlorination rate was 92%, and there was highly effective degradation of PCE based on the coimmobilized bead. Additionally, relation to the diameter (X) and broken-loading (Y) of the Ba-alginate bead was derived following equation, Y = 438.02 exp(–1.4815 X).  相似文献   

8.
The production of ethanol from starch by a coimmobilized mixed culture system of aerobic and anaerobic microorganisms in Ca-alginate gel beads was investigated. The mold Aspergillus awamori was used as an aerobic amylolytic microorganism and an anaerobic bacterium, Zymomonas mobilis, as an ethanol producer. By controlling the mixing ratio of the microorganisms in the inoculum size, a desirable coimmobilized mixed culture system, in which the aerobic mycelia grew on and near the oxygen-rich surface of the gel beads while the anaerobic bacterial cells mainly grew in the oxygen-deficient central part of the gel beads, was naturally established under the aerobic culture conditions, and ethanol could be directly produced from starch by the system. The ethanol productivity by the system in flask culture was particularly affected by the shear stress (dependent on the shaking speed) which controlled the mycelial growth on the surface of the gel beads. Under optimum culture conditions in the flask culture, the glucose produced was instantly consumed, and was not observed in the culture broth; the final concentration of ethanol produced from 100 g/L starch was 25 g/L and the yield coefficient for ethanol, Y(pls), was 0.38. The ethanol productivity by the coimmobilized mixed culture system was compared with those by other various culture systems and the advantages of the system were clarified.  相似文献   

9.
Previous studies have shown that juvenile hormone (JH) regulates dopamine (DA) and octopamine (OA) content in Drosophila, and we have shown the influence of an increase in JH level on DA and OA metabolism in young females of Drosophila virilis and Drosophila melanogaster. Here we investigate the effects of genetic ablation of a subset of cells in the Corpusallatum (CA, endocrine gland synthesizing JH) on the DA levels and activities of alkaline phosphatase (ALP), tyrosine hydroxylase (TH), DA-dependent arylalkylamine N-acetyltransferase (DAT) and tyrosine decarboxylase (TDC) in young D. melanogaster females under normal conditions and upon heat stress (38°С). We show that ablation of СА cells causes: (1) a decrease in ALP, TH and DAT activities, (2) an increase in DA level and (3) an increase in TDC activity in young females. The CA ablation was also found to modulate ALP, TH and TDC responses to heat stress. Mechanisms of regulation of DA and OA levels by JH in Drosophila females are discussed.  相似文献   

10.
The effect of exogenous 20‐hydroxyecdysone (20E) and juvenile hormone (JH) on the activities of the tyrosine decarboxylase (TDC), the first enzyme in octopamine (OA) synthesis, has been studied in young females of wild type D. virilis and D. melanogaster under normal and heat stress (38°C) conditions. Flies fed 20E expressed increased TDC activity in both species. JH application decreased TDC activity in both species. A rise in JH and 20E levels did not prevent a TDC response to heat stress, but changed the response intensity. A long‐term increase in JH titre had no effect on the activity of main OA catabolyzing enzyme, arylalkylamine N‐acetyltransferase, in females of both species. A possible mechanism of regulation of OA levels by 20E and JH in Drosophila females is discussed. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Tyramine, a frequent amine in wines, is produced from tyrosine by the tyrosine decarboxylase (TDC) activity of bacteria. The tyramine-producing strain Lactobacillus brevis IOEB 9809 isolated from wine and the reference strain L. brevis ATCC 367 were studied. At the optimum pH, 5.0, K(m) values of IOEB 9809 and ATCC 367 crude extracts for L-tyrosine were 0.58 mM and 0.67 mM, and V(max) was higher for the wine strain (115 U) than the ATCC 367 (66 U). TDC exhibited a preference for L-tyrosine over L-DOPA as substrate. Enzyme activity was pyridoxal-5'-phosphate (PLP)-dependent and it was stabilized by the substrate and coenzyme. In contrast, glycerol and beta-mercaptoethanol strongly inhibited TDC. Tyramine competitively inhibited TDC for both strains. Citric acid, lactic acid and ethanol had an inhibitory effect on cells and crude extracts, but none could inhibit TDC at the usual concentrations in wines.  相似文献   

12.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

13.
Dopamine (DA) content, tyrosine decarboxylase (TDC) activity and survival were studied under normal and environmental stress conditions in the ste and e strains carrying ebony mutation increasing DA level and the octopamineless strain Tbetah(nM18) of Drosophila melanogaster. Wild-type strains Canton S and Oregon R, and strain p845 from which Tbetah(nM18) strain was derived were used as controls. Sexual dimorphism of TDC activity, DA content, and survival in flies of all D. melanogaster strains under study was found. Tbetah(nM18) mutation sharply reduced TDC activity in females, while ebony had no such effect. DA content and survival under heat stress in Tbetah(nM18) flies did not differ from those in the wild type. ste and e flies had drastically increased DA content under normal conditions, dramatically decreased survival under heat stress, but increased survival under starvation. DA content and survival under heat stress were also studied in the reciprocal hybrids (males) F(1) of the cross D. virilis strains 101 (wild type) and 147 with X-linked mutation, which significantly increases DA content. 147x101 males had a considerably higher DA content and lower survival than 101x147 ones. Individuals of all D. melanogaster strains under study developed the stress reaction, as judged by changes in TDC activity and DA levels. The role of biogenic amines in the stress reaction development and adaptation to environmental stresses in Drosophila is discussed. Arch. Insect Biochem. Physiol. 55:55-67, 2004.  相似文献   

14.
The effect of a decreased availability of the D1-like dopamine receptor (DopR) in Drosophila (caused by DopR antagonist added into food) on the juvenile hormone (JH) synthesis rate in young female D. melanogaster has been studied. The JH degradation rate and the alkaline phosphatase (ALP) and tyrosine decarboxylase (TDC) activities were used as indicators of the JH synthesis rate. Treatment of the flies with butaclamol, a specific DopR antagonist, has been demonstrated to increase the JH degradation rate, and the stress reactivity of the system of JH metabolism and to decrease the ALP activity and stress reactivity, and to increase the TDC activity and stress reactivity. As shown earlier, all this indicates a decrease in the JH synthesis rate in young female drosophila with a decreased DopR availability. It is concluded that the activating effect of dopamine on JH synthesis in Drosophila is mediated by D1-like receptors.  相似文献   

15.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for midbrain dopaminergic neurons. To begin to understand the intracellular signaling pathways used by GDNF, we investigated the role of phosphatidylinositol 3-kinase activity in GDNF-stimulated cellular function and differentiation of dopaminergic neurons. We found that treatment of dopaminergic neuron cultures with 10 ng/ml GDNF induced maximal levels of Ret phosphorylation and produced a profound increase in phosphatidylinositol 3-kinase activity, as measured by western blot analysis and lipid kinase assays. Treatment with 1 µ M 2-(4-morpholinyl)-8-phenylchromone (LY294002) or 100 n M wortmannin, two distinct and potent inhibitors of phosphatidylinositol 3-kinase activity, completely inhibited GDNF-induced phosphatidylinositol 3-kinase activation, but did not affect Ret phosphorylation. Furthermore, we examined specific biological functions of dopaminergic neurons: dopamine uptake activity and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. GDNF significantly increased dopamine uptake activity and promoted robust morphological differentiation. Treatment with LY294002 completely abolished the GDNF-induced increases of dopamine uptake and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. Our findings show that GDNF-induced differentiation of dopaminergic neurons requires phosphatidylinositol 3-kinase activation.  相似文献   

16.
An Escherichia coli catalyst with tyrosine ammonia lyase activity (TAL) has been stabilized for repeated use in batch conversions of high tyrosine solids to p-hydroxycinnamic acid (pHCA). The TAL biocatalyst was stabilized by controlling the reaction pH to 9.8 +/- 0.1 and immobilizing the cells within a calcium alginate matrix that was cross-linked with glutaraldehyde and polyethyleneimine (GA/PEI). We found a GA range where the bead-encapsulated TAL was not inactivated, and the resulting cross-linking provided the beads with the mechanical stability necessary for repeated use in consecutive batch reactions with catalyst recycle. The GA/PEI calcium alginate TAL catalyst was used in 41 1-L batch reactions where 50 g L(-1) tyrosine was converted to 39 +/- 4 g L(-1) pHCA in each batch. The practical usefulness and ease of this process was demonstrated by scaling up the TAL bead immobilization and using the immobilized TAL catalyst in four 125-L bioconversion reactions to produce over 12 kg of purified pHCA.  相似文献   

17.
Termination of dopamine neurotransmission is primarily controlled by the plasma membrane-localized dopamine transporter. In this study, we investigated how this transporter is regulated by tyrosine kinases in neuronal preparations. In rat dorsal striatal synaptosomes, inhibition of tyrosine kinases by genistein or tyrphostin 23 resulted in a rapid (5-15 min), concentration-dependent decrease in [(3)H]dopamine uptake because of a reduction in maximal [(3)H]dopamine uptake velocity and dopamine transporter cell surface expression. The reduced transporter activity was associated with a decrease in phosphorylated p44/p42 mitogen-activated protein kinases. In primary rat mesencephalic neuronal cultures, the tyrosine kinase inhibitors similarly reduced [(3)H]dopamine uptake. When cultures were serum-deprived, acute activation of tyrosine kinase-coupled TrkB receptors by 100 ng/mL brain-derived neurotrophic factor significantly increased [(3)H]dopamine uptake; the effects were complex with increased maximal velocity but reduced affinity. The facilitatory effect of brain-derived neurotrophic factor on dopamine transporter activity depended on both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Taken together, our results suggest that striatal dopamine transporter function and cell surface expression is constitutively up-regulated by tyrosine kinase activation and that brain-derived neurotrophic factor can mediate this type of rapid regulation.  相似文献   

18.
19.
Tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from sarcoma 180 tumor cells. Following hypotonic disruption of mitochondria, tyrosine kinase activity appeared to cosediment with monamine oxidase, marker enzyme of mitochondrial outer membrane; meanwhile, serine and threonine kinases were found to be associated with the inner membrane and matrix of mitochondria. Mitochondrial tyrosine kinase(s) showed thermosensitivity and Mn2+ dependence, useful properties for its characterization and separation from tyrosine kinases associated with other particulate fraction and from serine and threonine kinases associated with mitochondria. Following in vitro incubation of mitochondria with labelled ATP as substrate and analysis by PAGE, a complex pattern of phosphotyrosine containing proteins with a major band of 50-55 kilodaltons resulted.  相似文献   

20.
以欧文氏菌(Erwinia herbicola)来源的酪氨酸酚裂解酶的重组大肠埃希菌Escherichia coli BL21为研究对象,研究固定化大肠埃希菌生产L-酪氨酸的条件。以海藻酸钠为载体,采用单因素实验分别考察了载体材料、明胶浓度、反应时间、苯酚浓度和辅助剂(二氧化硅、硅藻土和碳酸钙)等因素对L-酪氨酸生产的影响,发现明胶浓度、反应时间、苯酚和碳酸钙等因素的影响较为显著,进而通过正交实验探索最优条件。结果表明,生产L-酪氨酸的最优条件:载体为4%海藻酸钠与6%明胶的混合载体,苯酚浓度0.08 mol/L,反应时间8 h,于载体中添加0.6%碳酸钙。此条件下,连续反应9次后L-酪氨酸的产量达到64.5 g/L,比优化前提高了451.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号