首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A centriolar complex comprising a pair of centrioles and a cloud of pericentriolar materials is located at the point of covergence of the microtubules of the mitotic apparatus. The in vitro assembly of microtubules was observed onto these complexes in the 1,400 g supernatant fraction of colcemid-blocked, mitotic HeLa cells lysed into solutions containing tubulin and Triton X-100. Dark-field microscopy provided a convenient means by which this process could be visualized directly. When this 1,400 g supernate was incubated at 30 degrees C and centrifuged into a discontinuous sucrose gradient, a band containing centriolar complexes and assembled microtubles was obtained at 50-60% sucrose interface. Ultrastructual analysis indicated that the majority of the microtubules assembled predominantly from the pericentriolar material but also onto the centrioles. When cells were synchronized by a double thymide block, the assembly of microtubules onto centriolar complexes was observed only in lysates of mitotic cells; no assembly was seen in lysed material of interphase cells. Microtubule assembly occured onto centriolar complexes in solutions of either 100,000 g brain supernate, 2 X cycled tubulin, or purified tubulin dimers. This study demonstrates that the pericentriolar material becomes competent as a microtubule-organizing center (MTOC) at the time of mitosis. With use of the techniques described, a method for the isolation of centriolar complexes may be developed.  相似文献   

2.
The behavior of microtubules was studied in hybrids formed between mouse oocytes arrested in metaphase II or activated parthenogenetically and mouse embryo interphase blastomeres. In all cases the interphase blastomere's network of microtubules disassembles rapidly after fusion with oocytes. Introduction of interphase cytoplasm and nuclei to metaphase oocytes during fusion induces the polymerization of new microtubules in the cytoplasm and in the meiotic spindle. The degree and the duration of this facilitated polymerization of microtubules was positively correlated with the volume of blastomeres used for fusion. The blastomere nuclei induce the formation of microtubular frames, which become more evident when the chromatin undergoes premature condensation. Finally, spindle-like structures are formed around the prematurely condensed chromosomes. In hybrids activated around the time of fusion, the blastomere nuclei undergo pronuclear-like transformation. These hybrids develop an interphase network of microtubules typical for activated oocytes. These results are discussed with regards to the cell cycle control of microtubule behavior.  相似文献   

3.
alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.  相似文献   

4.
Cell surface and cytoplasmic polarity is exhibited by the blastomeres of mouse preimplantation embryos following compaction at the 8-cell stage of cleavage. It has been hypothesized that cytoplasmic polarity is initiated by plasma membrane functions of polar blastomeres that are absent from apolar blastomeres. To test this hypothesis the plasma membranes of "test" polar and apolar 8-cell- and 16-cell-stage blastomeres were inserted into the plasma membrane of "carrier" 4-cell-stage blastomeres by polyethylene glycol-mediated fusion of carrier-test blastomere pairs. After a 4-hr culture period each heterokaryon was scored for the distribution of two marker organelles--lipid droplets and nuclei--with respect to their proximity to the plasma membrane insert from the test blastomere. Plasma membrane inserts from polar test blastomeres were identified by labeling their apical domains with fluorescently tagged (succinylated) concanavalin A. The incidence of polar heterokaryons (those exhibiting a discrete fluorescently labeled area of plasma membrane corresponding to the apical domain inherited from the test blastomere) was 55/85 (69%) and 48/79 (61%) for 8-cell-stage and 16-cell-stage test blastomeres, respectively. In all polar heterokaryons, both nuclei were subjacent to the fluorescent label (apical domain of a polar plasma membrane insert), while the majority of lipid droplets resided in the hemisphere opposite the fluorescent label. In all 61 apolar heterokaryons examined (those lacking a discrete fluorescently labeled plasma membrane area) both nuclei were centrally located and lipid droplets were randomly distributed. These observations are consistent with the hypothesis that cytoplasmic polarity can be initiated by properties that distinguish the plasma membranes of polar blastomeres from those of apolar blastomeres.  相似文献   

5.
Structural and functional polarity of starfish blastomeres   总被引:3,自引:0,他引:3  
The cortex of the blastomeres of Asterina pectinifera are structurally polarized so that some kinds of granules in the cortex, which can be stained vitally with Nile blue (Nile blue-positive granules, NBGs), and microvilli were distributed mainly in the apical region. The blastomeres always faced the adjoining blastomeres and blastocoel with the NBG-free, smooth region during embryogenesis. To confirm whether such blastomeres are functionally polarized, we rotated one of the blastomeres in the 2-cell-stage embryo so that it faced the other with the NBG-containing region. As a result, all embryos developed into twin or partitioned blastulae. This shows that the blastomeres are functionally polarized and have to orient the basal cortex toward the inner side of the embryo in order to be integrated into a blastula together with the others. The cortical polarity was formed and maintained even in blastomeres of dissociated embryos. In such blastomeres the cleavage furrows were formed along the axis of polarity. When the blastomeres began to adhere closely to each other at the 256-cell stage, only the NBG-free (basal) region acquired adhesiveness. These facts make it possible to infer why the correct apicobasal orientation of blastomeres is necessary for embryonic integration, without considering intercellular communication during the cleavage stage.  相似文献   

6.
We studied the cellular mechanisms underlying the induction of polarity in individual blastomeres of the 8-cell mouse embryo. The ability to induce polarity is lacking in the membranes of unfertilized and newly fertilized mouse eggs, then develops during the 2-cell stage, and is present in membranes of cells from 4-, 8-, and 16-cell stages. The axis of polarity takes 3-5 h to become established and thereafter appears to be stable. Multiple cell contacts affect the orientation of the axis of polarity, and no polarity develops in cells which are totally surrounded. Polarized cells show evidence of an limited capacity for slight adjustments in their position relative to other cells. The implications of these results for the mechanisms by which a blastocyst is generated are discussed briefly.  相似文献   

7.
Mouse blastomeres in metaphase and in early and mid-cytokinesis were extracted with 50% glycerol, then deglycerinated and thin sectioned. A continuous layer of microfilaments was found in association with the plasma membrane. A loose network constitutes this layer during metaphase, whereas in early cytokinesis filaments tend to be packed more tightly and oriented parallel to the long axis of the cell. During mid-cytokinesis this arrangement is similar, except in the contractile ring which consists mainly of circumferentially arranged filaments.  相似文献   

8.
Several recent studies have proposed a model that the organization of the mouse blastocyst is determined by the pattern of early cleavages: the plane of first cleavage divides the two-cell embryo into embryonic (Em) and abembryonic (Ab) halves, while the timing of the second cleavages specifies which blastomere becomes the Em half. This model is still controversial because of conflicting observations in various studies. Here, we investigated the possibility that the difference between mouse strains contributed to the discrepancy of the findings of different experiments regarding the relationship between the first two cleavages and the blastocyst axial pattern. First, we showed by using a lipophilic, fluorescent tracer that the plane of the first cleavage bears no consistent spatial relationship to the Em-Ab axis of the blastocyst regardless of the genotypic background. Secondly, the order of the second cleavage does not correlate with the Em-Ab polarity of the blastocyst. This was demonstrated by tracing the lineage of the early- and later-dividing two-cell stage blastomeres in the whole embryo as well as by comparing the developmental potential of isolated early- and later-dividing blastomeres and chimeras made entirely of early- or later-dividing blastomeres. These results suggest that contrary to recent studies, the differences between the early- and later-dividing blastomeres of the two-cell embryo are not functionally evident and do not define the Em-Ab polarity of the blastocyst. The significance of these findings is discussed in relation to human assisted reproduction and preimplantation genetic diagnosis.  相似文献   

9.
Electrofusion of mouse blastomeres   总被引:10,自引:0,他引:10  
Fusion of blastomeres of 2-cell mouse embryos with an intact zona pellucida can be induced with electric pulses. Fusion was most frequent with the field strength of 1 kV/cm and direct current pulses of 100-250 microsec duration. An electrolyte solution (PBS) can be used instead of a non-electrolyte solution (0.3 M mannitol). The viability of blastomeres fused in these two types of solution is similar. Fused 2-cell blastomeres develop into tetraploid blastocysts but die after implantation. Embryos in which blastomeres failed to fuse despite the treatment (diploid controls) can develop till term. The technique can also be applied to 3- and 4-cell embryos and to zona-free oocytes and blastomeres.  相似文献   

10.
Controlling the number of its centrioles is vital for the cell, as supernumerary centrioles cause multipolar mitosis and genomic instability. Normally, one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole 'overduplication' are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in S-phase-arrested cells. Under conditions when multiple daughters form simultaneously on a single mother, all of these daughters must be removed to induce reduplication. The number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) by overexpression of the PCM protein pericentrin in S-phase-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.  相似文献   

11.
Myosin rings and spreading in mouse blastomeres   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1145-1150
The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced changes in myosin distribution that resembled those which occur during cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was associated with the development of stable cell-substrate attachments. In addition, a ring of myosin was formed along the edge of the cells' contact to the substrate. The presence of such a ring may be related to the potential for subsequent cell spreading. A myosin ring was also identified in the apical junctional region of the outer morula cells where it similarly separated the cell periphery into contacted and free peripheral domains. Following these changes in myosin organization the embryos spread on the substrate by extension of lamellipodia. These movements were coupled to the dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence of changes in the pattern of myosin distribution suggests that contact regulation of myosin organization plays an important role in controlling the spreading behavior of blastomeres and perhaps more generally in the organization of cells into epithelia.  相似文献   

12.
13.
Spectrin and calmodulin in spreading mouse blastomeres   总被引:2,自引:0,他引:2  
The role of spectrin and its association with calmodulin in spreading mouse blastomeres was investigated. Embryonic spectrin binds 125I-calmodulin in a calcium-dependent fashion in the blot overlay technique. Double-labeling experiments show coordinate redistribution of spectrin and calmodulin in blastomeres preparing to undergo active spreading movement. At this stage cortical spectrin staining is lost from the region of cell-substrate contact and spectrin and calmodulin become concentrated in two structures closely associated with the contacted region: a group of spherical bodies located on the cytoplasmic side of the cortical layer and a subcortical ring that marks the perimeter of the contacted region. The localization pattern of spectrin and calmodulin is also coordinated with that of actin and myosin. The results suggest that spectrin plays a role in the spreading of blastomeres and that this function may involve linkage of spectrin, calmodulin, and the cortical contractile apparatus.  相似文献   

14.
Late 8-cell blastomeres were harvested within the first 45 min after entering mitosis. Some mitotic cells were analysed within the ensuing 2 h for the organization of their surface in relation to their progress through mitosis. Whereas in most late interphase cells microvilli were restricted to a discrete polar region, in mitotic cells at all stages from early metaphase to immediately postcytokinesis microvilli were found to be present over more of the cell surface. Other mitotic cells were placed in nocodazole to arrest them in M-phase for up to 10 h. They were found to show an even more extensive distribution of microvilli over the whole surface, the longer periods of incubation yielding more extended coverage such that many cells no longer appeared to have any residual surface polarity. Removal from nocodazole at all time points from 1 to 10 h resulted in most cells completing mitosis to yield pairs of cells which, in most cases, resembled pairs derived from nonarrested blastomeres and in which a defined polar area of microvilli was restored. However, the percentage of differentiative divisions decreased after 6 h arrest. If, instead of removing cells from nocodazole, they were placed in both nocodazole and cytochalasin D (CCD) for periods of up to 3 h, most microvilli retracted to reveal a tight polar zone of CCD-resistant microvilli. This result suggests that a heterogeneity of cytocortical organization may still exist within the arrested mitotic cell. We propose a model to explain the origin of this heterogeneity of organization and its relationship to the generation of cell diversity.  相似文献   

15.
Many zygotes and spores of brown algae are photosensitive and establish a developmental axis in accordance with directional light cues. Ectocarpus siliculosus is being advanced as a genetic and genomic model organism for investigating brown alga development, and this report investigates photopolarization of the growth axis of mitospores. When exposed to unidirectional light, mitospores photopolarized and established a growth axis such that germination was preferentially localized to the shaded hemisphere of the spore body. The roles of the microtubule cytoskeleton and endomembrane cycling in the photopolarization process were investigated using pharmacological agents. Disruption of microtubule dynamics progressively reduced the percentage of mitospores that photopolarized, while inhibition of vesicle secretion blocked photopolarization nearly completely. Chronic treatment with these pharmacological agents severely affected algal morphogenesis. Microtubules in mitospores and algal filaments were imaged by confocal microscopy. Mitospores contained a radial microtubule array, emanating from a centrosome associated with the nuclear envelope. At germination, the radial array gradually transitioned into a longitudinal array with microtubules extending into the emerging apex. At mitosis, spindles were aligned with the growth axis of cylindrical cells in the filament, and the division plane bisected the spindle axis. These studies demonstrate that dynamic membrane cycling and microtubule assembly play fundamental roles in photopolarization and provide a foundation for future genetic and genomic investigations of this important developmental process.  相似文献   

16.
Cell polarization and cell division are two fundamental cellular processes. The mechanisms that establish and maintain cell polarity and the mechanisms by which cells progress through the cell cycle are now fairly well understood following decades of experimental work. There is also increasing evidence that the polarization state of a cell affects its proliferative properties. The challenge now is to understand how these two phenomena are mechanistically connected. The aim of the present chapter is to provide an overview of the evidence of cross-talk between apicobasal polarity and proliferation, and the current state of knowledge of the precise mechanism by which this cross-talk is achieved.  相似文献   

17.
Cells must break symmetry to acquire polarity. Microtubules have been implicated in the induction of asymmetry in several cell types, but their role in the Caenorhabditis elegans zygote, a classic polarity model, has remained uncertain. One study (see Tsai and Ahringer on p. 397 of this issue) brings new light to this problem by demonstrating that severe loss of microtubules impairs polarity onset in C. elegans.  相似文献   

18.
Mammalian oocyte meiosis encompasses two rounds of asymmetric divisions to generate a totipotent haploid egg and, as by-products, two small polar bodies. Two intracellular events, asymmetric spindle positioning and cortical polarization, are critical to such asymmetric divisions. Actin but not microtubule cytoskeleton has been known to be directly involved in both events. Recent work has revealed a positive feedback loop between chromosome-mediated cortical activation and the Arp2/3-orchestrated cytoplasmic streaming that moves chromosomes. This feedback loop not only maintains meiotic II spindle position during metaphase II arrest, but also brings about symmetry breaking during meiosis I. Prior to an Arp2/3-dependent phase of fast movement, meiotic I spindle experiences a slow and non-directional first phase of migration driven by a pushing force from Fmn2-mediated actin polymerization. In addition to illustrating these molecular mechanisms, mathematical simulations are presented to elucidate mechanical properties of actin-dependent force generation in this system.  相似文献   

19.
The protein composition of nuclear matrices containing different amount of DNA was examined. It was found that, in matrices containing 2% to 80% of total DNA, the quantity of DNA-bound proteins remains relatively constant varying from 10% to 15% of total nuclear proteins. Electrophoretic patterns do not differ substantially, but autoradiograms with in vitro 125I labelled proteins show quantitative variations in the actin content. Application of radioimmunoassay (RIA) enabled to determine the exact content of actin in GAT nuclei and nuclear matrices – 5 g/ml in nuclei, of which 50% are bound to DNA and 3001o being a component of the protein part of the nuclear matrix. These results are supported by electron microscopic data, where immunogold technique was performed on thin sections and spread material. The applied methods suggest that part of the nuclear actin is tightly bound (resistant to 2 M NaCI) to DNA and represents a component of the internal nuclear matrix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号