首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.  相似文献   

2.
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F (PGF) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means ± SEM) serum concentration of progesterone on Day 9 (3.06 ± 0.09 ng/mL vs. 2.53 ± 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 ± 0.11 mm vs. 12.05 ± 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 ± 0.10 mm, 11.90 ± 0.11 mm, and 12.00 ± 0.10 mm for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 ± 0.11 ng/mL, 3.81 ± 0.11 ng/mL, and 4.87 ± 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU eCG. Cows receiving PGF on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 ± 0.21 ng/mL vs. 4.58 ± 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 ± 0.21 mm vs. 10.84 ± 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 ± 0.14 ng/mL vs. 4.55 ± 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol.  相似文献   

3.
Serum luteinizing hormone (LH) and cortisol concentrations were measured in ten fall calving, Angus cows averaging 38 +/- 8 days postpartum. Calves from five cows were weaned at the beginning of the study. Blood samples were collected at 20 min. intervals for 48 h after weaning and for 8 h on day 4 and day 6 postweaning. Mean serum LH concentrations increased (P<0.01) in weaned cows (W) from 0.55 +/- 0.01 ng/ml at time of calf removal to 1.3 +/- 0.04 ng/ml 48 h afterwards. Comparable LH concentrations for suckled cows (S) were 0.65 +/- 0.08 ng/ml and 0.62 +/- 0.03 ng/ml respectively. Average serum LH concentrations at 48 h after weaning were greater (P<0.01) for W cows than S cows and a treatment by time interaction occurred (P<0.01) with serum LH concentrations increasing (P<0.01) from time of calf removal to 48 h after calf removal in W cows. Frequency of LH peaks increased (P<0.01) in W cows and by 48 h after weaning was greater (P<0.01) in W cows than in S cows. Magnitude of LH peaks did not differ between the two groups. Serum cortisol concentrations were not different between W and S cows except for a transient elevation (P<0.01) in W cows from 7.6 +/- 0.9 ng/ml to 11.9 +/- 1.0 ng/ml 9 to 12 h after calf removal. Since serum LH concentrations were increased in W cows but not in S cows at 48 h and serum cortisol concentrations increased transiently in W cows we suggest that circulating cortisol levels may not be a physiological inhibitor of LH secretion in the suckled postpartum beef cow.  相似文献   

4.
The objective was to determine whether eCG in an ovulation synchronization protocol with an intravaginal progesterone (P4)-releasing device (IPRD) containing a low dose of P4 improves pregnancy rate (PR) to fixed-time AI (FTAI) in Bos indicus heifers. Day 0, 2 y old Brahman heifers were allocated to either eCG+ (n = 159) or eCG- (n = 157) treatment groups. All heifers were weighed, body condition scored (BCS), and ultrasonographically examined to measure uterine horn diameter and presence of a CL. On Day 0, all heifers received a low-dose IPRD (0.78 g P4) and 1 mg of estradiol benzoate (EB) im. On Day 8, the IPRD was removed, all heifers received 500 μg cloprostenol im, and those in the eCG+ treatment group received 300 IU of eCG im. On Day 9, all heifers received 1 mg EB im. All heifers were FTAI 52 to 56 h after IPRD removal. Ten days after FTAI, heifers were exposed to bulls. Heifers were diagnosed as pregnant to FTAI, natural mating, or not detectably pregnant (NDP) 65 d after FTAI. Treatment with eCG+ as compared to eCG- did not affect PR to FTAI (28.9 vs 30.6%; P = 0.590), natural mating (51.3 vs 47.7%; P = 0.595), or overall (65.4 vs 63.7%; P = 0.872). Mean live weight gain from Days 0 to 65 d post-FTAI was higher in heifers pregnant to FTAI (72.29 ± 4.26 kg; P = 0.033) and overall (66.83 ± 3.65 kg; P = 0.021), compared to heifers that were NDP (60.03 ± 3.16 kg). Uterine diameter group, 9–11, 12–13, and 14–20 mm (26.2, 31.3, and 33.3%; P = 0.256), presence and absence of CL (29.8 vs 29.4%; P = 0.975), AI technicians 1, 2, and 3 (32.6, 28.8, and 22.4%; P = 0.293) and sires A, B, and C (23.9, 36.0 and 27.0%; P = 0.122) had no effect on PR to FTAI, natural mating, or overall. In conclusion, treatment of primarily cycling Brahman heifers with 300 IU eCG in conjunction with a low P4-dose (0.78 g) IPRD and EB to synchronize ovulation, did not improve PR after FTAI, natural mating, or overall.  相似文献   

5.
A study was conducted to determine the pituitary and ovarian responses to 72 hr calf removal (CR) and/or gonadotropin releasing hormone (GnRH) in beef cows. Forty-eight Angus, Simmental, and Charolais crossbred cows in moderate body condition were allotted to an experiment of 2 x 2 factorial design involving CR and GnRH. At 30 to 32 days postpartum, calves were removed for 72 hr from the CR and CR plus GnRH groups. All cows were injected (i.m.) with saline or 200 mug of GnRH at 33 to 35 days postpartum. Saline or GnRH was injected 5 hr before calf return. Plasma luteinizing hormone (LH) was measured in blood samples collected every 30 min for 5.5 hr beginning 30 min prior to injection of saline or GnRH. Plasma progesterone was measured in blood samples collected 0, 7, and 14 days after GnRH injection and 7 and 14 days following the first detected estrus. There were no differences (P>0.05) in the interval to peak LH release or the magnitude of the LH release between the GnRH and CR plus GnRH groups; however, the GnRH induced release of LH was greater (P<0.05) over time when preceded by CR. Plasma progesterone concentrations were increased on day 7, compared to day 0, after GnRH injection in 57% and 50% of the animals in the GnRH and CR plus GnRH groups, respectively. However, behavioral estrus was not observed in any of the cows between days 0 and 7 after GnRH injection. A higher (P<0.05) percentage of the cows injected with GnRH formed luteal tissue compared to cows injected with saline; however, the luteal lifespan following GnRH injection was decreased relative to the luteal lifespan following the first observed estrus. The mean interval from calving to first estrus was decreased (P<0.05) by 17 days in the CR group relative to the other groups, and calf removal had no detrimental effect on milk production at 80 days postpartum or on calf weaning weights at approximately 7 months of age. In summary, 72 hr CR decreased the postpartum interval and increased the pituitary responsiveness to GnRH. Pretreatment with 72 hr CR did not alter circulating progesterone concentrations or luteal lifespan of corpora lutea induced by GnRH.  相似文献   

6.
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n = 36) and anestrous (n = 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P = 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows.  相似文献   

7.
Contamination transferred into the uterus from external genitalia during artificial insemination (AI) has been hypothesized to cause lowered bovine pregnancy rates (PR). Using aseptic techniques, there is still a possibility of uterine contamination during routine AI. Two experiments were conducted to evaluate the effect of two types of sheath covers (CS) placed over the conventional French Medium Syringe assembly (FMS) used for AI. Their use entailed passing the assembly to the external os of the cervix, pushing the FMS through the CS and manipulating the FMS to the cervical uterine junction in the normal manner. Fifty-six day non-return rate (NRR) in dairy and actual PR in beef cattle were evaluated. In Experiment 1, 30 professional technicians were employed to inseminate 7, 387 dairy cows, while in Experiment 2, six technicians with varying levels of experience inseminated 416 beef cows. Least-squares means for NRR in dairy cattle were 78% using a CS and 79% without. Means for PR in beef cattle were 57% using a CS and 62% without. In Experiment 2, the overall PR was lower in Trial l than in other trials (P<0.05). Since some technicians improved with time, the difference due to trial was attributed to technician variation in gaining experience with a CS. Results indicate that general use of a CS in routine AI of apparently healthy cows will not increase PR.  相似文献   

8.
The aim of this study was to compare four methods of estrus resynchronization performed 23 days after timed artificial insemination (TAI) plus estrus observation in Bos indicus cows. Eight hundred fourteen lactating Nelore cows were submitted to TAI and then randomly assigned to one of the five following treatments: R23 (resynchronization without eCG), R23/200 (resynchronization with 200 IU of eCG), R23/300 (resynchronization with 300 IU of eCG), R23/TCR (resynchronization with temporary calf removal [TCR]), and a control group, with estrus observation followed by AI (with no resynchronization). Treatment consisted of a progesterone device plus administration of estradiol benzoate on Day 0; on Day 8, the device was removed and cloprostenol was applied, together with estradiol cypionate. Also on Day 8, either eCG was administered or TCR was performed in the resynchronized groups, except for R23. The females were inseminated 48 hours after device removal or TCR (33 days after the first TAI). The control group was kept under estrus observation from 18 to 23 days after the first TAI and was inseminated 12 hours after detection of estrus. The first pregnancy evaluation was performed using ultrasound examination 31 days after the first TAI. After 30 days of the resynchronization, a second pregnancy evaluation was performed and the animals in the R23/300 and R23/TCR groups achieved the highest conception rates, 76.6% and 74.0%, respectively (P < 0.05). There were no differences between the conception rates of the animals in the R23/200 (63.3%), R23 (61.3%), and control (54.3%) groups (P > 0.05). These results suggest that estrus resynchronization at 23 days after TAI can effectively improve the conception rate of lactating Bos indicus cows in a short time period. Furthermore, resynchronization with 300 IU of eCG or with TCR provided the best results.  相似文献   

9.
Three experiments were designed to evaluate the effect of different circulating progesterone (P4) concentrations during synchronization of ovulation protocol for timed artificial insemination of seasonal anestrous buffalo cows. In the first trial, ovariectomized cows were randomly allocated into one of three groups: using new P4 devices (G-New; n = 8), using devices previously used for 9 days (G-Used1x; n = 8), and using devices previously used for 18 days (G-Used2x; n = 8). The P4 device was maintained for 9 days, and the circulating P4 concentration was measured daily. The circulating P4 concentrations during the P4 device treatment were the lowest for G-Used2x (1.10 ± 0.04 ng/mL), intermediate for G-Used1x (1.52 ± 0.05 ng/mL), and the highest for G-New (2.47 ± 0.07 ng/mL; P = 0.001). In the second trial, 31 anestrous cows had their ovarian follicular dynamics evaluated after receiving the treatments described previously (G-New [n = 10], G-Used1x [n = 11], and G-Used2x [n = 10]). At insertion of the P4 device, cows were administered 2.0 mg of estradiol benzoate. Nine days later, the P4 device was removed and cows were administered 0.53 mg of cloprostenol sodium plus 400 IU of eCG. Forty-eight hours after P4 device removal, 10 μg of buserelin acetate was administered. There were no differences among the groups (G-New vs. G-Used1x vs. G-Used2x) in diameter of the largest follicle at P4 device removal (9.0 ± 0.8 vs. 10.1 ± 0.9 vs. 8.6 ± 0.8 mm; P = 0.35), in interval from P4 device removal to ovulation (77.1 ± 4.5 vs. 76.5 ± 4.7 vs. 74.0 ± 4.4 hours; P = 0.31), or in ovulation rate (80.0% vs. 81.8% vs. 60.0%; P = 0.51). In experiment 3, 350 anestrous cows were randomly assigned into one of the three treatments described previously (G-New, n = 111; G-Used1x, n = 121; G-Used2x, n = 118) and received a timed artificial insemination for 16 hours after buserelin treatment. The 30-day pregnancy rates did not differ among groups (55.9% vs. 55.4% vs. 48.3%; P = 0.39). Thus, the low circulating P4 concentrations released from a used P4 device efficiently control the ovarian follicular growth and had no detrimental effect on the pregnancy rates of the seasonal anestrous buffalo cows.  相似文献   

10.
To control postpartum anestrus and reduce calving to conception interval, 167 crossbred non-pregnant cows that were 90–130 days postpartum were allotted randomly to one of the following treatments: PH (n = 59), intra-vaginal sponge with 250 mg of medroxyprogesterone acetate (MAP) for 7 days plus 50 mg of MAP and 5 mg 17-β estradiol (17β-E) in the first day of treatment (day −8), 500 UI eCG (day −3) and 1.5 mg 17β-E in 24 h after sponge removal (day 0); CR (n = 57), temporary calf removal for 120 h; CG (n = 51), control group without treatment. Estrus rate differed among treatments (P < 0.01) being greater in PH (78.2%), followed by CR (52.0%) and CG (22.9%). A greater proportion of cows in the PH (80.0%) and CR (54%) groups had ovulations when compared to CG (35.4%). Intervals to first estrus were 13.5 ± 6.3 days, 26.1 ± 6.4 days and 52.5 ± 7.5 days for the PH, CR and CG groups, respectively. First insemination conception was similar in the three groups. Postpartum intervals to first breeding (PFS) and to conception (PCI) were longer in CG than PH and CR groups (P < 0.05; P < 0.01). The PH and CR groups had a similar PFS but PCI was different (P < 0.02). Accumulated pregnancy rate at 30 and 60 but not at 90 days were different (30 days: P < 0.09; P < 0.01; P < 0.09; 60 days: P < 0.06; P < 0.01; P < 0.03) among treatments. After 90 days post-treatment, 9%, 18% and 33% of cows from the PH, CR and CG groups had not conceived. Similarly, 5.4%, 6.0% and 12.5% of cows from the PH, CR and CG groups, respectively, were culled from the herd because of lack of pregnancy after 180 days post treatment. In the group of cows evaluated by ultrasonography, only those cows having larger ovaries and dominant follicles had ovulations. It was concluded that the hormonal treatment was more efficient in inducing a fertile estrus and reducing calving to conception interval followed by the calf removal for 120 h. Each method can be considered as an important tool to reduce the postpartum anestrous period in dual purpose herds when AI is conduct in the tropics.  相似文献   

11.
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of an intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or on Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F (PGF; 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF was administered on Day 7 than on Day 9, but in anestrous cows, no effects of time of the PGF treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility.  相似文献   

12.
Ten primiparous crossbred cows were assigned to two dietary groups at calving. One group received 120% and the other group received 80% of the National Research Council (NRC) recommended allowance of dietary energy for primiparous cows. At 60 days postpartum, calves were removed from their dams. Blood samples were collected from the cows at 15-min intervals for 8 hr beginning at the time of calf removal and again 24 hr, 48 hr and 72 hr after calf removal. At 72 hr after calf removal, all cows were given 200 ug GnRH intravenously. At calf removal, serum LH concentrations were higher (P<0.01) for cows on 120% (0.9 +/- 0.03 ng/ml) compared to cows on 80% (0.5 +/- 0.03 ng/ml) of recommendations. Serum LH concentrations increased (1.6 +/- 0.1 ng/ml, P<0.01) by 24 hr in cows on the highenergy diet. In contrast, a similar increase was not observed in cows on the low-energy diet until 48 hr after calf removal (1.4 +/- 0.2 ng/ml, P<0.01). These contrasting patterns in serum LH concentrations resulted in a diet by time interaction (P<0.01). Serum LH concentrations increased in both dietary energy groups following GnRH injection, but the response was greater (P<0.01) in cows on the low-energy diet compared to the cows fed the high-energy diet. These results indicate that inadequate dietary energy delays the LH response to calf removal and increases the LH response to exogenous GnRH.  相似文献   

13.
The effects of body condition at calving and breeding and temporary calf removal prior to the start of the breeding season on reproductive performance of 323 cows from two breed groups were studied over two breeding seasons. Body condition score at calving was significantly and positively correlated with two body condition indices, which were based on weight-to-height ratio measured at calving and at the start of the breeding season. While the two body condition indices were strongly associated with the age of the cow, the body condition score, based on palpation and visual appraisal, was less affected by the age of the cow. Cows with a body condition score of 3.0 at calving had a shorter calving interval (P<0.02), higher pregnancy rate (P<0.08), and higher number of calves born (P<0.10) than cows which had body condition scores lower than 3.0 at calving. Temporary (48 h) calf removal prior to the start of the breeding season did not have a significant influence on the calving interval, pregnancy rate or the number of calves born nor on the weaning weights of their calves. Differences in reproductive performance between the two breed groups of cows were not significant.  相似文献   

14.
The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2α and assigned to one of four treatments in a 2 × 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 h later; (4) EE: eCG + ECP. There were significant interactions for eCG × ovulatory stimulus and eCG × BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS.  相似文献   

15.
Two experiments evaluated the effects of timing of the induction of ovulation in superstimulated lactating Holstein donor cows that were fixed-time artificially inseminated. Secondary objectives were to evaluate the effects of the timing of progesterone (P4) device removal (Experiment 1) or the addition of a second norgestomet implant (Experiment 2) during superstimulation. In Experiment 1, 12 cows were allocated to one of four treatment groups with the timing of P4 device removal (24 or 36 h) and pLH treatment (48 or 60 h), after the first PGF as main factors, in a Latin Square (cross-over) design. There was an interaction (P = 0.03) between time of P4 device removal and time of pLH treatment. Mean (± SEM) numbers of transferable embryos were higher when the P4 device was removed at 36 h and pLH was administered at 60 h after the first PGF (P36LH60 =6.3 ± 1.4) compared to other treatments (P24LH60 =3.7 ± 1.1; P24LH48 =2.4 ± 0.8; or P36LH48 =2.2 ± 0.7). In Experiment 2, 40 cows were randomly allocated into one of four treatments with the number of norgestomet implants (one or two) and the time of induction of ovulation with GnRH relative to the first PGF (48 vs. 60 h) as main effects. The mean number of transferable embryos was higher (P = 0.02) when GnRH was administered at 60 h (4.2 ± 1.3) compared to at 48 h (2.7 ± 0.8), and the number of freezable embryos was increased (P = 0.01) in cows receiving two (3.0 ± 1.0) rather than one norgestomet implant (1.5 ± 0.5). In summary, embryo production in lactating Holstein cows was increased when the ovulatory stimulus (pLH or GnRH) was given 60 h after the first PGF, particularly when the P4 device was removed 36 h after the first PGF and when two norgestomet ear implants were used during the superstimulation protocol.  相似文献   

16.
Control of the white-tailed doe's reproductive cycle is not well documented. The objective was to determine the effects of giving equine chorionic gonadotropin (eCG) at progesterone device removal on fixed time artificial insemination (FTAI) pregnancy rates in white-tailed does. All does (n = 74) were synchronized with a vaginal progesterone implant (CIDR; 0.3 g progesterone), inserted on Day 0 (without regard to stage of estrous cycle), removed 14 days later, and subjected to FTAI, on average, 60 h post-CIDR removal. Of these, 34 were given 200 IU (im) of eCG at CIDR removal. Overall, FTAI pregnancy rate was 50% across 2 yrs (effect of year, P = 0.35). Administration of eCG at CIDR removal did not affect (P = 0.16) pregnancy rate (eCG = 59%; no eCG = 43%). Pregnancy rates were not affected by vulva score or doe disposition. Does that were ≤ 4 yrs old were more likely (P = 0.01) to become pregnant than does > 4 yrs of age. Does inseminated ≥ 60.5 h after CIDR removal were 22 times more likely (P = 0.002) to become pregnant to FTAI than does inseminated < 60.5 h. When frozen-thawed semen was deposited in the cervix or uterus, does were 17 times more likely (P = 0.005) to become pregnant compared with those receiving intravaginal insemination. Fecundity was not different (P = 0.73) across treatment groups (1.6 ± 0.11; no eCG vs. 1.7 ± 0.10; eCG). Furthermore, fecundity of does pregnant to FTAI was not different (P = 0.72) compared with does pregnant to clean-up bucks (1.7 ± 0.08; AI does vs. 1.7 ± 0.09; clean-up bucks). In summary, white-tailed does were successfully inseminated using a 14 days FTAI protocol, eCG may not be essential for acceptable pregnancy rates, and increased pregnancy rates may result when FTAI is done ≥ 60.5 h after progesterone device removal.  相似文献   

17.
Field trials were conducted to increase fertility with AI of flow-sorted, sexed bovine sperm. In the first trial, a novel competitive fertilization approach was used to compare pressures (30 psi vs 50 psi) for sorting sperm. Both X- and Y-sperm were sorted to approximately 95% purity at 30 and at 50 psi; X-50 + Y-30 (and the converse) were mixed in equal numbers for AI of heifers. Fetal sex divulged which treatment produced the pregnancy; 82% of pregnancies resulted from the 30 psi treatment (P < 0.05). Based on a similar approach, a new-pulsed laser did not damage sperm any more than the previous standard continuous wave laser. In a large field trial, sorting sperm at 40 psi increased pregnancy rates in heifers relative to 50 psi (42.3% vs 34.1%, n = 367/group, P < 0.05). Storing sperm for 20 h before sorting at 40 psi decreased pregnancy rates from 42.3% (n = 367) to 36.8% (n = 368; P < 0.05). Breeding heifers with sexed sperm 55-56 h after CIDR removal and PGF resulted in 34% (n = 32) pregnant, compared to 49% (n = 35) with fixed-time insemination 67-68 h after CIDR removal (P > 0.1). Lactating dairy cows pre-screened for normal reproductive tracts when OvSynch injections (GnRH, prostaglandin, GnRH) were initiated, had similar (P > 0.1) pregnancy rates to timed AI, with 10 × 106 sexed sperm (43.9%, n = 57), 2 × 106 sexed sperm (40.5%, n = 57) and 10 × 106 unsexed control sperm (55.6%, n = 58). A final field trial with unselected, lactating dairy cows resulted in similar pregnancy rates for 2 × 106 sexed sperm in 0.25 mL straws (25.0%, n = 708) and 0.5 mL straws (24.4%, n = 776), but lower (P < 0.05) than unsexed control sperm (37.7%, n = 713). Younger cows and those >84 days in milk had the highest pregnancy rates for both sexed and unsexed sperm. These studies improved sperm sexing procedures, and provided insight into appropriate commercial use of sexed sperm.  相似文献   

18.
Seventy-six Brahman cows and first-calf heifers were assigned to one of two groups: 1) normal suckling (34 cows) or 2) twice-daily suckling (45 minutes of suckling each time; 42 cows). Twice-daily suckling was carried out from 30 days postcalving until weaning (seven months). All animals were maintained under artificial insemination for a four-month breeding period. Mean pregnancy rate was 63.06 +/- 0.06% and was influenced by suckling group (P<0.01) and number of parturitions (P<0.05). The pregnancy rates were 33% higher in twice-daily suckled cows. Forty-four percent of the first calf heifers in the twice-daily suckling group became pregnant compared to 9% in the normal suckling group (P<0.01). Twice-daily suckling improved pregnancy rate without depressing preweaning calf performance.  相似文献   

19.
The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P4) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAI) on Day 0. On Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine®; Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin®; Intervet Schering-Plough), and 2500 IU hCG (Chorulon®; Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P4 did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P4 concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P4 concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy.  相似文献   

20.
Three experiments were conducted to determine the effects of low-dose progesterone presynchronization and eCG on pregnancy rates to GnRH-based, timed-AI (TAI) in beef cattle (GnRH on Day 0, PGF on Day 7, with GnRH and TAI on Day 9, 54-56 h after PGF). Experiments 1 and 2 were 2 × 2 factorials with presynchronization (with or without a once-used CIDR; Days −15 to 0 in Experiment 1 and Days −7 to 0, with PGF at insertion, in Experiment 2), and with or without 400 IU eCG on Day 7 in suckled cows. In Experiment 3, suckled cows and nulliparous heifers were either presynchronized with a twice-used CIDR (Days −5 to 0) and PGF at insertion, or no treatment prior to insertion of a new CIDR (Days 0-7). Presynchronization increased (P < 0.05) ovulation rate to GnRH on Day 0 (75.0% vs 48.7%, 76.7% vs 55.0%, and 60.0% vs 36.1% for Experiments 1, 2, and 3, respectively), increased the diameter of the preovulatory follicle in Experiments 1 and 2, and increased the response to PGF (regardless of parity) in Experiment 1 (P < 0.01), and in primiparous cows in Experiment 2 (P < 0.01). Effects of presynchronization on pregnancy rates (53.4% vs 54.1%, 57.7% vs 45.3%, and 54.3% vs 44.4% for Experiments 1, 2, and 3, respectively) were influenced by parity and eCG (P < 0.05). Treatment with eCG had no effect (P > 0.05) on the diameter of the preovulatory follicle (Experiment 1), or the response to PGF (Experiments 1 and 2), but tended (P = 0.08) to improve pregnancy rates, especially in primiparous cows that were not presynchronized (P < 0.01). However, the effects of eCG and presynchronization were not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号