首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
G N Turner  P Nobis    W C Dewey 《Biophysical journal》1976,16(9):1003-1012
The DNA in Chinese hamster cells was labeled first for 3 h with [3H]TdR and then for 3 h with [125I]UdR. Chromatin was extracted, frozen, and stored at -30 degrees C until 1.0 X 10(17) and 1.25 X 10(17) disintegrations/g of labeled DNA occurred for 125I and 3H respectively. Velocity sedimentation of chromatin (DNA with associated chromosomal proteins) in neutral sucrose gradients indicated that the localized energy from the 125I disintegrations, which gave about 1 double-strand break/disintegration plus an additional 1.3 single strand breaks, selectively fragmented the [125I] chromatin into pieces smaller than the [3H] chromatin. In other words, 125I disintegrations caused much more localized damage in the chromatin labeled with 125I than in the chromatin labeled with 3H, and fragments induced in DNA by 125I disintegrations were not held together by the associated chromosomal proteins. Use of this 125I technique for studying chromosomal proteins associated with different regions in the cellular DNA is discussed. For these studies, the number of disintegrations required for fragmenting DNA molecules of different sizes is illustrated.  相似文献   

2.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   

3.
Abstract. We have studied carcinoma NT, a transplantable mouse adenocarcinoma of spontaneous origin. Cells labelled with [3H]thymidine ([3H]TdR) were restricted to a narrow zone around the periphery of this tumour and were also found in rings up to 50 μ m wide, around isolated blood vessels in the central necrotic area. Labelling with [3H]deoxyuridine ([3H]UdR), another DNA synthesis precursor, produced a very different pattern. The labelled zone around the periphery was much wider than with [3H]TdR, and [3H]UdR labelled cells were found up to 110 μ m from isolated vessels. [3H]iododeoxyuridine ([3H]IUdR) gave the same pattern of labelling as [3H]UdR. In the heavily labelled zone, within 1 mm of the tumour periphery, the labelling index (LI) was 51% after [3H]UdR or [3H]IUdR injection, and only 36% with [3H]TdR.
The data show that at least half of the DNA-synthesizing cells in this tumour did not incorporate [3H]TdR. Previous workers reported cell loss factors for carcinoma NT of 60% calculated from [3H]TdR labelling data and 30% from the rate of loss of [125I]UdR. The present work suggests that calculations based on [125I]UdR data are more likely to be accurate for carcinoma NT than those using [3H]TdR data.  相似文献   

4.
Mice were injected intravenously with tritiated thymidine (TdR) and 125I-labeled iododeoxyuridine (IUdR) in low doses to provide a simultaneous labeling of tissue DNA with non-toxic amounts of these two precursors. The total activity per organ and the ratio of the two isotopes was measured in the DNA at various times between 1 and 15 days after the injection. Since TdR from dying cells is re-utilized more effeciently than IUdR from the same cells, more labeled TdR than IUdR was retained in the tissue DNA in these experiments. From the slopes of the regression lines, the true rated of turnover of replicating tissue DNA and the per cent re-utilization of TdR were calculated. Re-utilization of TdR varied from 37 to 60% in the six tissues examined.  相似文献   

5.
Mice were injected intravenously with tritiated thymidine (TdR) and 125I-labeled iododeoxyuridine (IUdR) in low doses to provide a simultaneous labeling of tissue DNA with non-toxic amounts of these two precursors. The total activity per organ and the ratio of the two isotopes was measured in the DNA at various times between 1 and 15 days after the injection. Since TdR from dying cells is re-utilized more efficiently than IUdR from the same cells, more labeled TdR than IUdR was retained in the tissue DNA in these experiments. From the slopes of the regression lines, the true rate of turnover of replicating tissue DNA and the per cent re-utilization of TdR were calculated. Re-utilization of TdR varied from 37 to 60 % in the six tissues examined.  相似文献   

6.
Mice were injected intravenously with a solution containing tritiated thymidine (TdR) and iodine-labelled iododeoxyuridine (IUdR). The ratio of 3H/125I activities was measured in the acid-soluble fraction and in the DNA of several tissues at various times from 0.08 to 24 h after injection. There did not appear to be any discrimination in favor of TdR in the acid-soluble fraction of the tissues. The amount of TdR incorporated into the DNA was four to five times greater than the amount of IUdR incorporated; moreover, this value remained relatively constant throughout the period of DNA synthesis under the conditions used. Although IUdR was destroyed more rapidly than TdR in the body, particularly at high concentrations of both precursors, this factor did not account for the major portion of the discrimination observed with tracer amounts of the two DNA precursors. Discrimination in favor of TdR as a precursor for DNA must, therefore, occur at some stage in the utilization of intracellular precursor.  相似文献   

7.
Radiotoxicity of 125I in mammalian cells   总被引:3,自引:0,他引:3  
The radiotoxicity of 125I in Chinese hamster V79 lung fibroblasts has been studied following extracellular (Na125I), cytoplasmic [125I]iododihydrorhodamine (125I-DR), and nuclear (125IUdR) localization of the radionuclide. Exposure of the cells for 18 h to Na125I (less than or equal to 7.4 MBq/ml) had no effect on survival. A similar exposure to 125I-DR produced a survival curve with a distinct shoulder and with a mean lethal dose (D37) of 4.62 Gy to the nucleus. While this value compares well with the 5.80 Gy X-ray D37 dose, it is in contrast to the survival curve obtained with DNA-bound 125IUdR which is of the high LET type and has a D37 of 0.80 Gy to the nucleus. Furthermore, when the uptake of 125I into DNA is reduced by the addition of nonradioactive IUdR or TdR to the medium and the survival fraction is determined as a function of 125I contained in the DNA, a corresponding increase in survival is observed. This work demonstrates the relative inefficiency of the Auger electron emitter 125I when located in the cytoplasm or outside the cell. It indicates that a high dose deposited within the cytoplasm contributes minimally to radiation-induced cell death and that radiotoxicity depends not upon the specific activity of IUdR but upon the absolute amount of 125I that is associated with nuclear DNA.  相似文献   

8.
Radioimmunoassays for detecting cell-associated or released virus are described using either (125)I- or [(3)H]acetate-labeled antibodies. In the first assay system, antigen-antibody complexes were separated from free antibody by centrifugation. Sensitivities of 0.1 mug of iridescent virus could be achieved with either (125)I- or [(3)H]acetate-labeled antibody. In the second assay, the antigen was fixed to cover-slip cell cultures, and then reacted with labeled antibody, unbound radioactivity being removed by repeated washing. Nonspecific binding with this method was 0.5 to 1% of the total radioactivity added and sensitivities of 0.1 or 10 mug were achieved with (125)I and [(3)H]acetate, respectively. Immunoglobulins were labeled at the rate of 1 in 300 for (125)I and 1 in 200 with [(3)H]acetate although there was a 400-fold greater isotopic abundance of (125)I relative to (3)H. The possibility of preparing labeled protein of high specific activity using carrier-free [2-(3)H]iodoacetic acid is discussed.  相似文献   

9.
Thymidine (TdR) incorporation into DNA as a measure of bacterial production in environmental samples relies on assumptions about what organisms incorporate exogenous thymidine, extent of dilution of labelled thymidine by internal and external pools, and analytical methods for recovery and purification of bacterial DNA. We have examined these assumptions with regard to the feasibility of using [3H]TdR incorporation in the water column and sediments of a blackwater river. The extent of dilution of added [3H]TdR may be determined with isotope dilution plots (Moriarty and Pollard, 1981 and 1982) and these indicate a wide range of degree of participation of added [3H]TdR. Previously described methods for extracting DNA from sediment bacteria may lead to underestimates and we described a more efficient recovery scheme.  相似文献   

10.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.

Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   


11.
The toxic effects of the short-lived (T 1/2 = 13.2 h) Auger-electron-emitting isotope 123I, incorporated in the form of 123IUdR into the DNA of V79 cells in vitro, have been investigated and compared to those of 125IUdR. For the concentrations tested, the rate of incorporation of 123IUdR at any time is proportional to the concentration of extracellular radioactivity. The curve for survival of clonogenic cells decreases exponentially and exhibits no shoulder at low doses. The mean lethal dose (D37) to the nucleus is 79 +/- 9 cGy and is about the same as that obtained previously with 125IUdR. However, the total number of decays needed to produce this D37 with 123IUdR is about twice that required with 125IUdR, approximately equal to the ratio of the energy deposited in microscopic volumes by 125I and 123I, respectively. This correlation suggests that nuclear recoil, electronic excitation, and chemical transmutation are probably of minor importance to the observed biological toxicity with either isotope. The results also indicate that there are no saturation effects in the decay of 125IUdR in the DNA of V79 cells (i.e., all of the emitted energy is biologically effective) and that each of the two steps involved in the 125I decay is equally effective in causing biological damage.  相似文献   

12.
We have enhanced the uptake of 5-[125I]iodo-2'-deoxyuridine (125IUdR) in Chinese hamster V79 cells with 5-fluoro-2'-deoxyuridine (FUdR) and have examined the combined toxicity of these agents. Although the uptake of 125IUdR increases approximately 3.2 +/- 0.5-fold in the presence of 1 microM FUdR, when cell survival fraction is plotted as a function of intranuclear 125IUdR content, the biphasic curve obtained reaches a plateau at a higher survival fraction than with control cells not exposed to FUdR. The results suggest that a greater number of cells were prevented from entering the S phase and consequently from incorporating 125IUdR. An FUdR- 125IUdR combination, therefore, does not seem to enhance the therapeutic potential of 125IUdR. Such observations are also of importance when FUdR and other inhibitors are used to enhance cold IUdR uptake in an effort to obtain an increase in radiosensitization effects.  相似文献   

13.
Swiss Albino mice received a single i.v. injection of 3H-thymidine (TdR) or of 125I-deoxyuridine (IUdR). Bone marrow, thymus, spleen and mesenteric lymph node were examined for the efficiency of precursor incorporation into DNA, and for DNA renewal from day 1 to day 8.
TdR is 5–8 times more efficiently incorporated by the different organs in vivo and in vitro than is IUdR. This indicates that the discrimination against IUdR occurs at the level of DNA synthesizing cells.
A diminished DNA turnover rate measured with 3H-TdR in comparison with 125I-UdR is interpreted to indicate reutilization of TdR.
TdR reutilization was observed in bone marrow and spleen from at least day 1 on, and in the thymus from day 3 on, following pulse labeling of DNA synthesizing cells. The degree of TdR reutilization appears higher in the thymus (67%) than the bone marrow (43%) and spleen (38%). The mesenteric lymph node indicates either no, or a very low efficiency of TdR reutilization. The data are also consistent with a reutilization equally efficient for TdR and IUdR.
It is suggested that the TdR salvage pathway in hemopoietic tissues is largely localized to single organs which have immediate access to TdR made available by catabolism of DNA. The contribution of TdR from systemic reutilization to the organs studied falls within the limits of error of measurements. Moreover, the TdR salvage pathway especially in the lymph node may involve other DNA breakdown products than nucleosides.  相似文献   

14.
Using a serum-free medium supplemented with hormones and growth factors, which included epidermal growth factor (EGF), we investigated the binding and processing-degradation of [125I]EGF in WI-38 cells of various in vitro ages. The binding and processing-degradation systems of these cells remained essentially unchanged throughout their lifespan. The number of specific [125I]EGF binding sites per cell increased as the cultures senesced, though the number of specific binding sites per micron 2 (surface area) remained constant. The kinetics of ligand degradation as well as the qualitative and quantitative nature of the degradation products also remained essentially unchanged throughout the life-span. The only consistent alteration in any of the binding parameters measured was the slight decrease in the apparent Kd of the ligand-receptor complex, independent of temperature. Quantitation of EGF-stimulated DNA synthesis revealed a decrease in the percentage of cells incorporating [3H]thymidine ([3H]TdR) during a 30-h exposure from 45% in young cells to 0.25% in senescent cells, although [125I]EGF binding or processing-degradation did not differ significantly in young and old cells. Thus, EGF binding does not decrease in senescence.  相似文献   

15.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

16.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

17.
With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2′-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3′,5′-di-O-acetyl-2′-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3′,5′-di-O-pivaloyl-2′-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31–47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.  相似文献   

18.
Cell progression after selective irradiation of DNA during the cell cycle   总被引:1,自引:0,他引:1  
Chinese hamster ovary cells were labeled with [125I]iododeoxyuridine (125IUdR, 0.1184 MBq/ml for 20 min) and the labeled mitotic cells were collected by selective detachment ("mitotic shake off"). The cells were pooled, plated into replicate flasks, and allowed to progress through the cell cycle. At several times after plating, corresponding to G1, S, late S, and G2 plus M, cells were cooled to stop cell cycle progression and to facilitate accumulation of 125I decays. Evaluation of cell progression into the subsequent mitosis indicated that accumulation of additional 125I decays during G1 or S phase was eight to nine times less effective in inducing progression delay than decays accumulated during G2. The results support our previous hypothesis that DNA damage per se is not responsible for radiation-induced progression delay. Instead, 125I-labeled DNA appears to act as a source of radiation that associates during the G2 phase of the cell cycle with another radiosensitive structure in the cell nucleus, and damage to the latter structure by overlap irradiation is responsible for progression delay (M. H. Schneiderman and K. G. Hofer, Radiat. Res. 84, 462-476 (1980].  相似文献   

19.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

20.
Cycling rats were given continuous infusions of [3H] thymidine [( 3H] TdR) by means of osmotic minipumps, and autoradiographs of ovaries were prepared. Silver grains were distributed in a diffuse and uniform fashion over the granulosa layer of growing follicles. Nearly 100% of granulosa cells in large healthy follicles were labeled within 24 h. This uniform labeling makes possible detailed cell cycle analysis, as well as other kinetic studies. Follicles which were already atretic before the minipumps were inserted remained unlabeled. Follicles which became atretic after the minipumps were inserted were heavily labeled. Thus, with continuous labeling, it is possible to deduce retrospectively the viability of a particular follicle as it had been at the time the minipumps were inserted. Short-term continuous infusion of [3H] TdR, therefore, provides a valuable temporal component to morphometric studies of the ovary and should be useful for the study of other rapidly growing tissues as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号