首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New aziridine 2‐phosphonic acids were prepared by monohydrolysis of the aziridine 2‐phosphonates that were obtained by the modified Gabriel?Cromwell reaction of vinyl phosphonate or α‐tosylvinyl phosphonate with a primary amine or a chiral amine. The cellular cytotoxicity of these compounds was tested against the HCT‐116 colorectal cancer cell lines and the CCD‐18Co normal colon fibroblast lines using the MTT assay. Three of the synthesized phosphonic acid derivatives 2e (ethyl hydrogen {(2S)‐1‐[(1S)‐1‐(naphthalen‐2‐yl)ethyl]aziridin‐2‐yl}phosphonate), 2h (ethyl hydrogen (1‐benzylaziridin‐2‐yl)phosphonate), and 2i (ethyl hydrogen (1‐cyclohexylaziridin‐2‐yl)phosphonate) showed higher cytotoxicity than the reference cancer treatment agent etoposide. Cell death was through a robust induction of apoptosis even more effectively than etoposide, a well‐known apoptosis inducing agent.  相似文献   

2.
Two high resolution crystal structures of Escherichia coli alkaline phosphatase (AP) in the presence of phosphonate inhibitors are reported. The phosphonate compounds, phosphonoacetic acid (PAA) and mercaptomethylphosphonic acid (MMP), bind competitively to AP with dissociation constants of 5.5 and 0.6 mM, respectively. The structures of the complexes of AP with PAA and MMP were refined at high resolution to crystallographic R-values of 19.0 and 17.5%, respectively. Refinement of the AP-inhibitor complexes was carried out using X-PLOR. The final round of refinement was done using SHELXL-97. Crystallographic analyses of the inhibitor complexes reveal different binding modes for the two phosphonate compounds. The significant difference in binding constants can be attributed to these alternative binding modes observed in the high resolution X-ray structures. The phosphinyl group of PAA coordinates to the active site zinc ions in a manner similar to the competitive inhibitor and product inorganic phosphate. In contrast, MMP binds with its phosphonate moiety directed toward solvent. Both enzyme-inhibitor complexes exhibit close contacts, one of which has the chemical and geometrical potential to be considered an unconventional hydrogen bond of the type C-H...X.  相似文献   

3.
An efficient enzymatic synthesis of 6-chloropurine-2'-deoxyriboside from the reaction of 6-chloropurine with 2'-deoxycytidine catalyzed by nucleoside-2'-deoxyribosyltransferase (E.C. 2.4.2.6) followed by chemical conversion into the 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidite derivative is described. The phosphoramidite derivative was incorporated site-specifically into an oligonucleotide and used for the introduction of a tethered tetramethylrhodamine-cadaverine conjugate. The availability of an efficient route to 6-chloropurine-2'-deoxyriboside 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite enables the facile synthesis of oligonucleotides containing a range of functional groups tethered to deoxyadenosine residues.  相似文献   

4.
The syntheses of two new nucleoside phosphoramidites containing a hydroxyl functionality masked by a levulinate protecting group are presented; N(4)-(2-(ethylene glycol-2-levulinate)ethyl)-5-methyl-5'-(4,4'-dimethoxytrityl)-3'-O-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxycytidine 1 and 5-(N-(6-O-levulinoyl-1-aminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 3. Optimization of solid-phase-supported synthetic parameters for incorporation of these into DNA, removal of the levulinate group by exposure to dilute hydrazine, and subsequent attachment of dye labels is described. Synthesis of the known compound 5-(N-(6-trifluoroacetylaminohexyl)-3(E)-acrylamido)-5'-(4,4'-dimethoxytrityl)-3'-(2-cyanoethyldiisopropylphosphoramidite)-2'-deoxyuridine 2 (1), containing a masked amine at the end of an alkyl chain attached at the 5 position, was also revisited using new techniques developed for 3.  相似文献   

5.
The thioamide derivatives 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-[(2-methyl-1-thioxo- propyl)amino]thymidine 1 and 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-((6-([(9H-(fluo-ren-9- ylmethoxy)carbonyl]-amino)-1-thioxohexyl)amino) thymidine 2 were synthesized by regioselective thionation of their corresponding amides 7 and 8 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent). The thioamides were converted into the corresponding 5'-triphosphates 3 and 4. Compound 3 was chosen for DNA sequencing experiments and 4 was further labelled with fluorescein.  相似文献   

6.
Deprotected compounds 1 and 9 were allowed to react with 4,4'-dimethoxytrityl chloride in pyridine to give 5'-O-DMT nucleosides 2 and 10. The 3'-phosphoramidites 4 and 11 were incorporated into oligodeoxynucleosides (ODNs). The hybridization properties of the modified ODNs with their complementary DNA strands were studied. Interesting results were obtained when 11 was inserted as a bulged nucleoside into TWAs, duplexes, and triplexes.  相似文献   

7.
A simple and sensitive method for the quantitative determination of free amino groups on solid support is described. This approach is a modification of Ngo's [(1986) J. Biochem. Biophys. Methods 12, 349-354] method reported earlier. The method is based on the reaction of the solid support with an excess of 5'-O-(4,4'-dimethoxytrityl)-thymidine-3'-O-(2,4-dinitrophenyl) succinate (DTDS) in the presence of a catalytic amount of 4-dimethylaminopyridine. After removing the excess reagent, solid support is treated with perchloric acid to release 4,4'-dimethoxytrityl cation into the solution. The released 4,4'-dimethoxytrityl cation, which has a strong absorption at 498 nm (epsilon 498 = 70,000), is then determined spectrophotometrically. A comparative study of DTDS, N-succinimidyl-3-(2-pyridyldithio)propionate and 4,4-dimethoxytrityl chloride is also included. The method was found to be very useful to determine those amino groups which are available for functionalization of solid supports, especially, monitoring the functionalization of solid supports for affinity chromatography and synthesis of biopolymers.  相似文献   

8.
A simple and sensitive method for the estimation of polymer-supported amino groups is reported. The polymer support is treated either with N-succinimidyl-4-O-(4,4'-dimethoxytrityl)-butyrate or 2,4-dinitrophenyl-4-O-(4,4'-dimethoxytrityl)-butyrate and a catalytic amount of 4-dimethylaminopyridine. After removal of the excess reagent through washing, a weighed quantity of the polymer support is treated with perchloric acid to release the 4,4'-dimethoxytrityl cation from the solid support into the solution. The released 4,4'-dimethoxytrityl cation, which has a strong absorption (epsilon 498 = 70,000/M) at 498 nm, is determined spectrophotometrically. A comparative study of these reagents with N-succinimidyl-3-(2-pyridyldithio)-propionate, 4,4'-dimethoxytrityl chloride, and sodium 2,4,6-trinitrobenzenesulfonate methods is also included.  相似文献   

9.
The interaction between phosphorylase kinase (EC 2.7.1.38), isolated from rabbit skeletal muscles, and the ATP analogs with the modified triphosphate fragment: adenosine-5'-chloromethane pyrophosphonate (1), adenosine-5'-chloroethyl phosphate (2), adenosine-5'-bromethane pyrophosphonate (3), adenosine-5'-bromoethane phosphonate (4), adenosine-5'-chloroacetylaminomethane phosphonate (5), adenosine-5'-chloroacetylaminomethane pyrophosphonate (6) and adenosine-5'-chloromethane phosphonate (7), was studied. The compounds 1, 2 and 3 irreversibly inhibit the enzyme activity. In the presence of ATP the rate of inactivation is decreased. The radioactive compounds 1, 2 and 3 are stoicheometrically incorporated into the beta- and gamma-subunits of phosphorylase kinase. A correlation is shown to exist between the degree of the beta-subunit modification by compound 1 and the enzyme inactivation. The compounds 4, 5 and 6 inhibit the enzyme reversibly: in the presence of ATP complete protection of the enzyme activity is observed. The compound 7 does not affect the kinase activity; however, it binds itself to the beta-subunit of the enzyme. The binding of analogs 1 and 7 to the beta-subunit occurs at different sites. The data obtained are indicative of the catalytic role of the beta-subunit of phosphorylase kinase.  相似文献   

10.
Three protected derivatives of 1,N(6)-ethenoadenine nucleosides, viz. 3-[5-O-(4,4'-dimethoxytrityl) of 7-formyl-(1) and 7-(1,2-diacetyloxypropyl)-2'-deoxyadenosine (2), and 3-[5-O-(4,4'-dimethoxytrityl)-2-O-(tert-butyldimethylsilyl)-7-(ethoxycarbonyl)adenosine (3), expected to allow introduction of formyletheno and carboxyethenoadenine adducts into oligonucleotides by the conventional phosphoramidite chemistry, have been synthesized.  相似文献   

11.
The effects of efonidipine, a 1,4-dihydropyridine phosphonate, and structurally related compounds on rabbit sino-atrial node action potential were examined with microelectrodes. 3NIC5NZ has a phosphonate moiety identical to that of efonidipine at the C5 position of the dihydropyridine ring and a side chain identical to nicardipine at C3, while 3NZ5NIC has C5 and C3 side chains identical to nicardipine and efonidipine, respectively. All four compounds decreased the slope and prolonged the early and late phases of pacemaker depolarization. The selectivity for the late phase against the early phase was in the order of efonidipine > 3NIC5NZ > nicardipine > 3NZ5NIC. Thus, the phosphonate moiety at C5 position of the may be important for the characteristic prolongation of the late phase pacemaker depolarization by efonidipine.  相似文献   

12.
Racemic synthesis of novel 2′,5′,5′-trifluoro-apiose nucleoside phosphonic acid analogs were performed as potent antiviral agents. Phosphonation was performed by direct displacement of triflate intermediate with diethyl (lithiodifluoromethyl) phosphonate to give the corresponding (α,α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield the nucleoside phosphonate analogs. Deprotection of diethyl phosphonates provided the target nucleoside analogs. An antiviral evaluation of the synthesized compounds against various viruses such as HIV, HSV-1, HSV-2, and HCMV revealed that the pyrimidine analogues have significant anti-HCMV activity.  相似文献   

13.
Triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate (2) was coupled to the 5' terminus of oligodeoxynucleotides via hydrogen phosphonate solid support DNA synthesis methodology. Duplex DNA oligomers with a single 5'-phospholipid melted at lower temperatures than the corresponding unmodified duplex, but duplexes bearing lipids at each 5' end had higher Tms. In uptake experiments with L929 cells, 8-10 times more lipid-DNA became cell-associated than did unmodified DNA. Unmodified antisense diesters were inactive in a VSV antiviral assay in L929 cells (at up to 200 microM). Attachment of a lipid to the oligomer, however, led to a greater than 90% at 150 microM (greater than 80% at 100 microM) reduction in viral protein synthesis. The antiviral activity depended on the sequence of the oligodeoxynucleotide, but some compounds having little or no base complementarity to the viral target were also effective. Phosphorothioate derivatives reduced viral protein synthesis by 20-30% at 100 microM in the VSV assay. The lipid-DNA compounds were not toxic to the cells at up to 100 microM.  相似文献   

14.
Crystal structures of protein-tyrosine phosphatase 1B in complex with compounds bearing a novel isothiazolidinone (IZD) heterocyclic phosphonate mimetic reveal that the heterocycle is highly complementary to the catalytic pocket of the protein. The heterocycle participates in an extensive network of hydrogen bonds with the backbone of the phosphate-binding loop, Phe(182) of the flap, and the side chain of Arg(221). When substituted with a phenol, the small inhibitor induces the closed conformation of the protein and displaces all waters in the catalytic pocket. Saturated IZD-containing peptides are more potent inhibitors than unsaturated analogs because the IZD heterocycle and phenyl ring directly attached to it bind in a nearly orthogonal orientation with respect to each other, a conformation that is close to the energy minimum of the saturated IZD-phenyl moiety. These results explain why the heterocycle is a potent phosphonate mimetic and an ideal starting point for designing small nonpeptidic inhibitors.  相似文献   

15.
The challenge in working with anthraquinone-2'-deoxyadenosine (AQ-dA) conjugates is that they are insoluble in water and only sparingly soluble in most organic solvents. However, water-soluble AQ-dA conjugates with short linkers are required for study of their electrochemical and intramolecular electron transfer properties in this solvent prior to their use in laser kinetics investigations of photoinduced hole (cation) transport in DNA. This article first describes the synthesis of a water-soluble, ethynyl-linked AQ-dA conjugate, 8-[(anthraquinone-2-yl)ethynyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, based on initial formation of a 5'-O-(4,4'-dimethoxytrityl) (5'-O-DMTr) intermediate. Because intended H2 over Pd/C reduction of the ethynyl linker in 5'-O-DMTr-protected 2'-deoxyadenosines cleaves the DMTr protecting group and precipitates multiple side products, this work also describes the synthesis of an ethylenyl-linked AQ-dA conjugate, 8-[2-(anthraquinone-2-yl)ethyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, starting with a 5'-O-tert-butyldiphenylsilyl protecting group.  相似文献   

16.
Cytosolic 5'-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5'-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues.  相似文献   

17.
The ribonucleoside building block, N2-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine, was prepared from commercial N2-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-propargyl guanosine in a yield of 91%. The propargylated guanylyl(3'-5')guanosine phosphotriester was synthesized from the reaction of N2-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine with N2-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl] guanosine and isolated in a yield of 88% after P(III) oxidation, 3'-/5'-deprotection, and purification. The propargylated guanylyl(3'-5')guanosine phosphotriester was phosphitylated using 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole and was followed by an in situ intramolecular cyclization to give a propargylated c-di-GMP triester, which was isolated in a yield of 40% after P(III) oxidation and purification. Complete N-deacylation of the guanine bases and removal of the 2-cyanoethyl phosphate protecting groups from the propargylated c-di-GMP triester were performed by treatment with aqueous ammonia at ambient temperature. The final 2'-desilylation reaction was effected by exposure to triethylammonium trihydrofluoride affording the desired propargylated c-di-GMP diester, the purity of which exceeded 95%. Biotinylation of the propargylated c-di-GMP diester was easily accomplished through its cycloaddition reaction with a biotinylated azide derivative under click conditions to produce the biotinylated c-di-GMP conjugate of interest in an isolated yield of 62%.  相似文献   

18.
Treatment of methyl 5-deoxy-5-C-( diethoxyphosphinyl )-2,3-O-isopropylidene-beta-D- ri bofuranoside with sodium dihydrobis (2- methoxyethoxy ) aluminate , followed by hydrogen peroxide, mineral acid, and hydrogen peroxide, gave 5-deoxy-5-C-( hydroxyphosphinyl )-alpha,beta-D- ribopyranoses in 40-45% overall yield. The structures of these sugar analogs were effectively established on the basis of the mass and 400-MHz, 1H-n.m.r. spectra of the title compounds, derived by treatment with diazomethane and then acetic anhydride in pyridine.  相似文献   

19.
Several 9-(phosphonoalkyl)guanines (Gua(CH2)nCH2-PO3H2; n = 4-6) and 9-(difluorophosphonoalkyl)guanines (Gua(CH2)nCF2PO3H2; n = 3-7) were studied as potential substrates and inhibitors of guanylate kinase. These compounds are inhibitors of the enzyme except 9-(5-phosphonopentyl)guanine (n = 4) which is a substrate with an efficiency of phosphorylation of about 0.3% that of GMP, as estimated from the Vmax/Km ratios. The phosphonate and difluorophosphonate derivatives with n = 5 produce optimal inhibition. These two compounds have similar affinity, both being competitive inhibitors with respect to GMP and noncompetitive inhibitors with respect to ATP. pH-dependence studies indicate that the dianionic rather than the monoanionic form of these compounds bind to the enzyme. The lack of phosphorylation of 9-(5,5-difluoro-5-phosphonopentyl)guanine by guanylate kinase is explained by the decreased nucleophilic character of the oxygen atoms of the phosphonate group rather than by inadequate binding to the GMP-binding site.  相似文献   

20.
3'-Amino-3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-N,5'(R)-C-ethylenethymidine (6) was synthesized starting from 3'-azido-3'-deoxythymidine. Condensation of 6 with 5'O-(H-phosphonyl)thymidine and 5'-O-(p-nitrophenoxycarbonyl)thymidine derivatives gave dinucleotide and dinucleoside derivatives, respectively, which were incorporated into oligodeoxynucleotides (ODNs). Tm data of the modified ODNs are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号