首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans-species origin of Mhc-DRB polymorphism in the chimpanzee   总被引:4,自引:0,他引:4  
Trans-specific evolution of allelic polymorphism at the major histocompatibility complex loci has been demonstrated in a number of species. Estimating the substitution rates and the age of trans-specifically evolving alleles requires detailed information about the alleles in related species. We provide such information for the chimpanzee DRB genes. DNA fragments encompassing exon 2 were amplified in vitro from genomic DNA of ten chimpanzees. The nucleotide sequences were determined and their relationship to the human DRB alleles was evaluated. The alleles were classified according to their positioni in dendrograms and the presence of lineage-specific motifs. Twenty alleles were found at the expressed loci Patr-DRB1,-DRB3, -DRB4, -DRB5, and at the pseudogenes Patr-DRB6, -DRB7; of these, 13 are new alleles. Two other chimpanzee sequences were classified as members of a new lineage tentatively designated DRBX. Chimpanzee counterparts of HLA-DRB1 * 01 and * 04 were not detected. The number of alleles found at individual loci indicates asymmetrical distribution of polymorphism between humans and chimpanzees. Estimations of intra-lineage divergence times suggest that the lineages are more than 30 million year old. Predictions of major chimpanzee DRB haplotypes are made.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M94937-M94954.  相似文献   

2.
 Like humans, non-human primates express the antigens A and B of the ABO histoblood group system. In chimpanzees, only A and O types are found, while the types A, B, AB, and O are found in macaques. The sequences of exons 6 and 7 of two chimpanzee O alleles (O del and O x ), two macaque species O alleles (rhesus monkey and crab-eating macaque), and sequences of exon 7 of two major chimpanzee A alleles (A 1ch and A 2ch ) were established. The sequences of cDNAs corresponding to the chimpanzee and rhesus monkey O alleles were characterized from exon 1 to 7 and from exon 4 to 7, respectively. A comparison of our results with ABO gene sequences already published by others demonstrates that human and non-human primate O alleles are species-specific and result from independent silencing mutations. These observations reinforce the hypothesis that the maintenance of the ABO gene polymorphism in primates reflects convergent evolution more than transpecies inheritance of ancestor alleles. Received: 30 July 1998 / Revised: 12 December 1998  相似文献   

3.
Genetic polymorphism in C4 in the chimpanzee was studied by agarose gel electrophoresis of desialated plasma and development of patterns by immunofixation with antiserum to human C4 and by a C4-sensitive hemolytic overlay. In general, immunofixation patterns showed multiple partially overlapping bands of which only the most cathodal had strong hemolytic activity. In analogy to human C4, the latter were designated C4B, whereas those detected by immunofixation which had little hemolytic activity were designated C4A. Chimp C4A and C4B reacted with human and mouse (monoclonal) anti-C4B and human anti-Ch1 but neither reacted with monoclonal anti-C4A or human anti-Ch2, Ch3, Rg1, or Rg2. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, the alpha chain of C4B showed a slightly lower apparent relative mass than that of C4A at around M r 93 000. There were three C4A variants and two C4B variants inherited in families as autosomal codominant traits, as C4A-C4B cosegregating pairs with no detectable crossing-over. These pairs were inherited with chimpanzee leukocyte antigen types C2 and BF variants without detectable crossing-over. Half-null C4 haplotypes with C4B *Q0 were observed in family studies. Nine BF, C2, C4A, C4B allelic haplotypic combinations (complotypes) were identified among presumably unrelated chimpanzees.Abbreviations used in this paper: ChLA chimpanzee leukocyte antigen - HLA human leukocyte antigen - EDTA ethylenediaminetetraacetate  相似文献   

4.
Here we present the first isolation of major histocompatibility complex (MHC) class I genes from two ancient fish, paddlefish (Polyodon spathula) and Chinese sturgeon (Acipenser sinensis). Seventeen sequences obtained showed high polymorphism and positive natural selection with dN/dS > 1. Evolutionary relationships revealed that sequences from paddlefish and Chinese sturgeon distinguished from other vertebrate class I and had an intermingling of alleles, which indicates that Acipenseriformes have a common ancestral gene of class I and a trans-species polymorphism across Acipenseriformes. We also found clear evidence of recombination among class I genes of paddlefish and Chinese sturgeon.  相似文献   

5.
Primate ABO glycosyltransferases: Evidence for trans-species evolution   总被引:5,自引:0,他引:5  
The human ABO blood group system is controlled by alleles at a single locus on chromosome 9. The alleles encode glycosyltransferases, which add different sugar residues to the terminal part of the oligosaccharide core, thus generating the A or B antigens; an allele encoding enzymatically inactive protein is responsible for the blood group O. The A and B antigens are present not only in humans, but also in many other primate species and it has been proposed that the AB polymorphism was established long before these species diverged. Here we provide molecular evidence for the trans-species evolution of the AB polymorphism. Polymerase-chain reaction (PCR) amplification and sequencing has revealed that the critical substitutions differentiating the A and B genes occurred before the divergence of the lineages leading to humans, chimpanzees, gorillas, and orangutans. This polymorphism is therefore at least 13 million years old and is most likely maintained by selection. Comparison of the sequences derived from different species indicates that the difference in enzymatic activities between the A and B transferases is caused by two single nucleotide substitutions responsible for Leu-Met and Gly-Ala replacement at positions 265 and 267 in the polypeptide chains, respectively.  相似文献   

6.
The antigenic determinants of human C4 have been defined by human IgG antisera, Rodgers (Rg) and Chido (Ch), in hemagglutination-inhibition assays (HAI). Eight (2 Rg and 6 Ch) are of high frequency, > 90% , and 1, WH, is of low frequency, 15 %. The phenotypic combinations are complex; generally, C4A expresses Rg, and C4B has Ch, but reverse antigenicities have been established both by HAI and by sequence data of selected C4 allotypes. A study of 325 families provides data on the antigenic expression of each C4 allotype and demonstrates strong associations. A structural model for the antigenic determinants of C4 proteins has been proposed and is completely supported by the family material. Of the 16 possible antigenic combinations for C4 proteins, only 3 are undetected. A new Ch combination has been recorded in two French families. The reported sequence variation within the C4d region can account for the antigenic determinants but leaves the location of electrophoretic variation in C4 still unclear.  相似文献   

7.
The fourth component of complement (C4) has two classes of protein, C4A and C4B, both of which have many allelic forms. The serological determinants Rodgers (Rg1, Rg2) and Chido (Ch1, Ch2, Ch3) are generally associated with C4A and C4B, respectively. The C4B3 allotype has been detected in a single Canadian family that expresses a novel Ch phenotype, Ch:–1, 2, –3. There was no information for the Rg determinants, as the C4A * 2B * 3 haplotype would normally express Rg on the C4A protein. Other C4B3 allotypes in informative families have different Ch phenotypes, and the relationships of these within extended major histocompatibility complex haplotypes are discussed in this paper.  相似文献   

8.
Sequence length polymorphisms between the amelogenin (AMELX) and the amelogenin-like (AMELY) genes both within and between several mammalian species have been identified and utilized for sex determination, species identification, and to elucidate evolutionary relationships. Sex determination via polymerase chain reaction (PCR) assays of the AMELX and AMELY genes has been successful in greater apes, prosimians, and two species of old world monkeys. To date, no sex determination PCR assay using AMELX and AMELY has been developed for new world monkeys. In this study, we present partial AMELX and AMELY sequences for five old world monkey species (Mandrillus sphinx, Macaca nemestrina, Macaca fuscata, Macaca mulatta, and Macaca fascicularis) along with primer sets that can be used for sex determination of these five species. In addition, we compare the sequences we generated with other primate AMELX and AMELY sequences available on GenBank and discuss sequence length polymorphisms and their usefulness in sex determination within primates. The mandrill and four species of macaque all share two similar deletion regions with each other, the human, and the chimpanzee in the region sequenced. These two deletion regions are 176-181 and 8 nucleotides in length. In analyzing existing primate sequences on GenBank, we also discovered that a separate six-nucleotide polymorphism located approximately 300 nucleotides upstream of the 177 nucleotide polymorphism in sequences of humans and chimps was also present in two species of new world monkeys (Saimiri boliviensis and Saimiri sciureus). We designed primers that incorporate this polymorphism, creating the first AMELX and AMELY PCR primer set that has been used successfully to generate two bands in a new world monkey species.  相似文献   

9.
The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.  相似文献   

10.
In the present study we focus on the nucleotide and the inferred amino acid variation occurring in humans and other primate species for mitochondrial NAD+-dependent succinic semialdehyde dehydrogenase, a gene recently supposed to contribute to cognitive performance in humans. We determined 2527 bp of coding, intronic, and flanking sequences from chimpanzee, bonobo, gorilla, orangutan, gibbon, and macaque. We also resequenced the entire coding sequence on 39 independent chromosomes from Italian families. Four variable coding sites were genotyped in additional populations from Europe, Africa, and Asia. A test for constancy of the nonsynonymous vs. synonymous rates of nucleotide changes revealed that primates are characterized by largely variable dN/dS ratios. On a background of strong conservation, probably controlled by selective constraints, the lineage leading to humans showed a ratio increased to 0.42. Human polymorphic levels fall in the range reported for other genes, with a pattern of frequency and haplotype structure strongly suggestive of nonneutrality. The comparison with the primate sequences allowed inferring the ancestral state at all variable positions, suggesting that the c.538(C) allele and the associated functional variant is indeed a derived state that is proceeding to fixation. The unexpected pattern of human polymorphism compared to interspecific findings outlines the possibility of a recent positive selection on some variants relevant to new cognitive capabilities unique to humans. [Reviewing Editor: Dr. Martin Kreitman] Paola Blasi and Francesca Palmerio contributed equally to the work.  相似文献   

11.
Diversity and diversification of HLA-A,B,C alleles   总被引:20,自引:0,他引:20  
The nucleotide sequences encoding 14 HLA-A,B,C and 5 ChLA-A,B,C molecules have been determined. Combining these sequences with published data has enabled the polymorphism in 40 HLA-A,B,C and 9 ChLA-A,B,C alleles to be analyzed. Diversity is generated through assortment of point mutations by recombinational mechanisms including gene and allelic conversions. The distribution and frequency of silent and replacement substitutions indicate that there has been positive selection for allelic diversity in the 5' part of the gene (exons 1 to 3) and for allelic homogenization and locus specificity in the 3' part of the gene (exons 4 to 8). These differences may correlate with the lengths of converted sequences in the two parts of the gene and frequency of the CpG dinucleotide. Locus-specific divergence of HLA-A,B, and C demonstrates that recombinational events involving alleles of a locus have been more important than conversion between loci. This contrasts with the predominance of gene conversion events in the evolution of mutants of the H-2Kb gene. However, a striking example of gene conversion involving HLA-B and C alleles of an oriental haplotype has been found. Comparison of human and chimpanzee alleles reveals extensive sharing of polymorphisms, confirming that diversification is a slow process, and that much of contemporary polymorphism originated in ancestral primate species before the emergence of Homo sapiens. There is less polymorphism at the HLA-A locus compared to HLA-B, with greater similarity also being seen between HLA-A and ChLA-A alleles than between HLA-B and ChLA-B alleles. Although greater diversity is seen in the 5' "variable" exons of HLA-B compared to HLA-A, there is increased heterogeneity in the 3' "conserved" exons of HLA-A compared to HLA-B.  相似文献   

12.
13.
The effective sizes of ancestral populations and species divergence times of six primate species (humans, chimpanzees, gorillas, orangutans, and representatives of Old World monkeys and New World monkeys) are estimated by applying the two-species maximum likelihood (ML) method to intron sequences of 20 different loci. Examination of rate heterogeneity of nucleotide substitutions and intragenic recombination identifies five outrageous loci (ODC1, GHR, HBE, INS, and HBG). The estimated ancestral polymorphism ranges from 0.21 to 0.96% at major divergences in primate evolution. One exceptionally low polymorphism occurs when African and Asian apes diverged. However, taking into consideration the possible short generation times in primate ancestors, it is concluded that the ancestral population size in the primate lineage was no smaller than that of extant humans. Furthermore, under the assumption of 6 million years (myr) divergence between humans and chimpanzees, the divergence time of humans from gorillas, orangutans, Old World monkeys, and New World monkeys is estimated as 7.2, 18, 34, and 65 myr ago, respectively, which are generally older than traditional estimates. Beside the intron sequences, three other data sets of orthologous sequences are used between the human and the chimpanzee comparison. The ML application to these data sets including 58,156 random BAC end sequences (BES) shows that the nucleotide substitution rate is as low as 0.6–0.8 × 10–9 per site per year and the extent of ancestral polymorphism is 0.33–0.51%. With such a low substitution rate and short generation time, the relatively high extent of polymorphism suggests a fairly large effective population size in the ancestral lineage common to humans and chimpanzees.[Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

14.
The human complement component 4 is encoded in two genes, C4A and C4B, residing between the class I and class II genes of the major histocompatibility complex. The C4A and C4B molecules differ in their biological activity, the former binding more efficiently to proteins than to carbohydrates while for the latter, the opposite holds true. To shed light on the origin of the C4 genes we isolated cosmid clones bearing the C4 genes of a chimpanzee, a gorilla, and an orang-utan. From the clones, we isolated the fragments coding for the C4d part of the gene (exons and introns) and sequenced them. Altogether we sequenced eight gene fragments: three chimpanzee (Patr-C4-1 *01, Patr-C4-1 *02, Patr-C4-2 *01), two gorilla (Gogo-C4-1 *01, Gogo-C4-2 *01), and three orang-utan (Popy-C4-1 *01, Popy-C4-2 *01, Popy-C4-3 *01). Comparison of the sequences with each other and with human C4 sequences revealed that in the region believed to be responsible for the functional difference between the C4A and C4B proteins the C4A genes of the different species fell into one group and the C4B genes fell into another. In the rest of the sequence, however, the C4A and C4B genes of each species resembled each other more than they did C4 genes of other species. These results are interpreted as suggesting extensive homogenization (concerted evolution) of the C4 genes in each species, most likely by repeated unequal, homologous, intragenic crossing-over. Address correspondence and offprint requests to: J. Klein.  相似文献   

15.
Summary The finding of two duplicated C4A haplotypes in a normal French family led to a detailed study of their C4 polymorphism. The father had an extremely rare A*6A*11, B* QO haplotype inherited by all of his children and the mother had the more common A*3A*2, B*QO haplotype. Two HLA identical daughters only have four C4A alleles. The father's A11 allotype expresses Ch: 1 (Chido) rather than Rg:1 (Rodgers) and represents a new Ch phenotype Ch: 1,-2,-3,-4,-5,-6. In order to clarify the genetic background in this unusual family, DNA studies of restriction fragment length polymorphisms (RFLPs) were undertake. The father's rare haplotype, which expresses two C4A allotypes, results from a long and a short C4 gene normally associated with the A*6, B*1 that also exhibits the BglII RFLP. As it travels in an extended MHC haplotype HLA A2, B57 (17), C2*C, BF*S, DR7 that is most frequently associated with A*6, B*1, we postulate that the short C4B has been converted in the chain region to a C4A gene which produces a C4A protein. This report of a short C4A gene is the first example in the complex polymorphism of C4.  相似文献   

16.
Applying a combined technology for the detection of allotypec variation of the fourth component of human complement (C4), including immunofixation with anti-C4 and C4-dependent lysis after agarose electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of C4 to separate the C4A and B -chains, and the determination of Rodgers (Rg) and Chido (Ch) determinants of C4 in serum and at the blotted C4 -chains, we detected rare human C4 allotypes and studied the genetic linkage. Partial inhibitors (p. i.) of anti-Rg and anti-Ch sera were found; the C4A51 allotype characterized as Rg p. i. and the C4A1 and C4B51 allotypes as Ch p. i. were genetically inherited. The C4A1 allotype has a unique Rg- Ch+ C4A -chain. Duplicated C4A loci, A *3, A *2, and A *5, A *2 were both associated with a C4BQO and the HLA haplotype A3-Cw4-Bw35-DR1. These additions to the already known extensive C4 polymorphism may help to sort out their significance for the biological functions of human C4.Abbreviations used in this paper BF Factor B polymorphism of the alternative pathway of complement activation - C2 second component of complement - C4 fourth component of complement - C4D C4-deficient (C4*QO/QO) - Ch Chido determinant on C4B* products - EDTA ethylendiaminetetraacetic acid - GLO I glyoxalase I - HLA human leucocyte antigens, A, B, C and DR (D =related) loci - PAGE polyacrylamide gel electrophoresis - PGM3 phosphoglucomutase, third locus - p. i. partial inhibitor = serological inhibition of some, but not all anti-Ch and anti-Rg sera at selected dilutions - SDS sodium dodecyl sulphate; 94k/96k, 94 000 and 96 000 dalton molecular weight Presented in part at the 1V International Workshop on the Genetics of Complement, July 13–15, 1982, Boston, MA, and the Xth International Complement Workshop, May 25–27,1983 in Mainz, Federal Republic of Germany.  相似文献   

17.
Genes of the vertebrate major histocompatibility complex (MHC) are crucial to defense against infectious disease, provide an important measure of functional genetic diversity, and have been implicated in mate choice and kin recognition. As a result, MHC loci have been characterized for a number of vertebrate species, especially mammals; however, elephants are a notable exception. Our study is the first to characterize patterns of genetic diversity and natural selection in the elephant MHC. We did so using DNA sequences from a single, expressed DQA locus in elephants. We characterized six alleles in 30 African elephants (Loxodonta africana) and four alleles in three Asian elephants (Elephas maximus). In addition, for two of the African alleles and three of the Asian alleles, we characterized complete coding sequences (exons 1–5) and nearly complete non-coding sequences (introns 2–4) for the class II DQA loci. Compared to DQA in other wild mammals, we found moderate polymorphism and allelic diversity and similar patterns of selection; patterns of non-synonymous and synonymous substitutions were consistent with balancing selection acting on the peptides involved in antigen binding in the second exon. In addition, balancing selection has led to strong trans-species allelism that has maintained multiple allelic lineages across both genera of extant elephants for at least 6 million years. We discuss our results in the context of MHC diversity in other mammals and patterns of evolution in elephants.  相似文献   

18.
Cynomolgus monkey is one of the macaque species currently used as an animal model for experimental surgery and medicine, in particular, to experiment new drugs or therapy protocols designed for the prevention of allograft rejection. In this field, it is of utmost importance to select histoincompatible recipient–donor pairs. One way to ensure incompatibility between donor and recipient is to check their major histocompatibility complex (MHC) genotypes at the loci playing a determinant role in histocompatibility. We report in this paper on the cynomolgus monkey DRB polymorphism evidenced by sequencing of amplified exon 2 separated either by denaturing gradient gel electrophoresis (DGGE), or by cloning. By the study of 253 unrelated animals from two populations (Mauritius and The Philippines), we characterized 50 exon 2 sequences among which 28 were identical to sequences already reported in Macaca fascicularis or other macaque species (Macaca mulatta, Macaca nemestrina). By cloning and sequencing DRB cDNA, we revealed two additional DRB alleles. Out of the 20 haplotypes that we defined here, only two were found in both populations. The functional impact of DR incompatibility was studied in vitro by mixed lymphocyte culture.  相似文献   

19.
Thirty-two phenotypes of alpha-1-antitrypsin (al-AT) controlled by 18 codominant alleles of PImac locus were identified by isoelectric focusing in 1.121 macaques of nine species. In terms of al-AT polymorphism macaque species vary markedly from nearly monomorphic (Macaca mulatta, M. arctoides) to highly polymorphic (M. nemestrina, M. fascicularis). Only 4 of 18 PImac alleles are common for two or more macaque species, the rest of the alleles are species-specific.  相似文献   

20.
Two single nucleotide polymorphisms of the mitochondrial DNA polymerase gamma gene (POLG1), rs2238296 (T/C) and rs758130 (T/C), were analyzed in individuals of different ethnicity (Russians and Buryats) with known genotypes of the CAG microsatellite located in the same gene. It was shown that microsatellite alleles with repeat numbers other than 10 were significantly more frequent within the TT haplotype. A phylogenetic analysis of human and chimpanzee POLG1 intron 2 sequences suggested that the haplotype TT, which is more heterogeneous regarding the CAG repeat polymorphism, is evolutionally younger than the haplotype CC. These data may be useful in the further research of the association between the CAG microsatellite polymorphism of POLG1 and male infertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号