首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Albert AP  Large WA 《Cell calcium》2003,33(5-6):345-356
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of alpha-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

2.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

3.
Shabala S  Cuin TA  Pottosin I 《FEBS letters》2007,581(10):1993-1999
Despite numerous reports implicating polyamines in plant salinity responses, the specific ionic mechanisms of polyamine-mediated adaptation to salt-stress remain elusive. In this work, we show that micromolar concentrations of polyamines are efficient in preventing NaCl-induced K(+) efflux from the leaf mesophyll, and that this effect can be attributed to the inhibition of non-selective cation channels in mesophyll. The inhibition by externally applied polyamines developed slowly over time, suggesting a cytosolic mode of action. Overall, we suggest that elevated levels of cellular polyamine may modulate the activity of plasma membrane ion channels, improving ionic relations and assisting in a plant's adaptation to salinity.  相似文献   

4.
Over twenty years ago it was shown that depletion of the intracellular Ca2+ store in smooth muscle triggered a Ca2+ influx mechanism. The purpose of this review it to describe recent electrophysiological data which indicate that Ca2+ influx occurs through discrete ion channels in the plasmalemma of smooth muscle cells. The effect of external Ca2+ on the amplitude and reversal potential of whole-cell and single channel currents suggests that there are at least two, and probably more, distinct store-operated channels (SOCs) which have markedly different permeabilities to Ca2+ ions. Two activation mechanisms have been identified which involve Ca2+ influx factor and protein kinase C (PKC) activation via diacylglycerol. In addition, in rabbit portal vein cells there is evidence that stimulation of α-adrenoceptors can stimulate SOC opening via PKC in a store-independent manner. There is at present little knowledge on the molecular identity of SOCs but it has been proposed that TRPC1 may be a component of the functional channel. We also summarise the data showing that SOCs may be involved in contraction and cell proliferation of smooth muscle. Finally, we highlight the similarities and differences of SOCs and receptor-operated cation channels that are present in native rabbit portal vein myocytes.  相似文献   

5.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

6.
7.
Campos-Toimil M  Orallo F 《Life sciences》2007,80(23):2147-2153
The effects of (-)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of tea, on Ca(2+)-permeable non-selective cation currents (NSCC) and voltage-operated Ca(2+) channels (VOCC) have been investigated in cultured rat aortic smooth muscle cells using the whole-cell voltage-clamp technique. Under the Cs(+)/tetraethylammonium (TEA)-containing internal solution, and in the presence of nifedipine (1 microM), EGCG (30 microM) activated a long-lasting inward current, with a reversal potential (E(rev)) of approximately 0 mV. This current was not significantly altered by the replacement of [Cl(-)](i) or [Cl(-)](o), implying that the inward current was not a chloride channel, but a NSCC. SKF 96365 (30 microM) and Cd(2+) (500 microM) almost completely abolished the EGCG-induced NSCC. A higher dose of EGCG (100 microM) additionally activated a nifedipine-sensitive inward current in the absence of depolarization protocol. EGCG (100 microM) also potentiated a nifedipine-sensitive voltage-dependent Ba(2+)-current during the first 5 min of incubation. However, after > 10 min of incubation with EGCG, this current was significantly inhibited. Our results suggest that EGCG caused a Ca(2+) influx into smooth muscle cells via VOCC (probably L-type) and other SKF-96365- and Cd(2+)-sensitive Ca(2+)-permeable channels. The action described here may be responsible for the contraction induced by EGCG in rat aortic rings and for the rise of the intracellular concentration of Ca(2+) in rat aortic smooth muscle cells evoked by this catechin. On the other hand, the inhibition of VOCC after > 10 min of incubation may be, in part, responsible for the relaxation of rat aorta induced by EGCG.  相似文献   

8.
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR–PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.

SMALL AUXIN UP RNA (SAUR) proteins and PP2C.D phosphatases antagonistically regulate stomatal aperture in Arabidopsis by modulating the activities of plasma membrane H+-ATPases and K+ channels.  相似文献   

9.
High-conductance K+ channels are known to be activated by internal Ca2+ and membrane depolarization. The effects of changes in internal Mg2+ concentration have now been investigated in patch-clamp single-channel current experiments on excised membrane fragments from mouse acinar cells. It is shown that Mg2+ in the concentration range 10(-6)-10(-3) M evokes a dose-dependent K+ channel activation at a constant Ca2+ concentration of 10(-8) M. The demonstration that changes in [Mg2+]i between 2.5 X 10(-4) and 1.13 X 10(-3) M has effects on the channel open-state probability indicates that fluctuations in [Mg2+]i in intact cells may influence the control of channel opening.  相似文献   

10.
We have studied the role of Mg2+ in the inactivation of inwardly rectifying K+ channels in vascular endothelial cells. Inactivation was largely eliminated in Mg(2+)-free external solutions and the extent of inactivation was increased by raising Mg2+o. The dose-response relation for the reduction of channel open probability showed that Mg2+o binds to a site (KD = approximately 25 microM at -160 mV) that senses approximately 38% of the potential drop from the external membrane surface. Analysis of the single-channel kinetics showed that Mg2+ produced a class of long-lived closures that separated bursts of openings. Raising Mg2+o reduced the burst duration, but less than expected for an open-channel blocking mechanism. The effects of Mg2+o are antagonized by K+o in manner which suggests that K+ competes with Mg2+ for the inactivation site. Mg2+o also reduced the amplitude of the single-channel current at millimolar concentrations by a rapid block of the open channel. A mechanism is proposed in which Mg2+ binds to the closed channel during hyperpolarization and prevents it from opening until it is occupied by K+.  相似文献   

11.
Liver cells possess store-operated Ca2+ channels (SOCs) with a high selectivity for Ca2+ compared with Na+, and several types of intracellular messenger-activated non-selective cation channels with a lower selectivity for Ca2+ (NSCCs). The main role of SOCs is thought to be in refilling depleted endoplasmic reticulum Ca2+ stores [Cell Calcium 7 (1986) 1]. NSCCs may be involved in refilling intracellular stores but are also thought to have other roles in regulating the cytoplasmic-free Ca2+ and Na+ concentrations. The ability of SOCs to refill the endoplasmic reticulum Ca2+ stores in hepatocytes has not previously been compared with that of NSCCs. The aim of the present studies was to compare the ability of SOCs and maitotoxin-activated NSCCs to refill the endoplasmic reticulum in rat hepatocytes. The experiments were performed using fura-2FF and fura-2 to monitor the free Ca2+ concentrations in the endoplasmic reticulum and cytoplasmic space, respectively, a Ca2+ add-back protocol, and 2-aminoethyl diphenylborate (2-APB) to inhibit Ca2+ inflow through SOCs. In cells treated with 2,5-di-t-butylhydroquinone (DBHQ) or vasopressin to deplete the endoplasmic reticulum Ca2+ stores, then washed to remove DBHQ or vasopressin, the addition of Ca2+ caused a substantial increase in the concentration of Ca2+ in the endoplasmic reticulum and cytoplasmic space due to the activation of SOCs. These increases were inhibited 80% by 2-APB, indicating that Ca2+ inflow is predominantly through SOCs. In the presence of 2-APB (to block SOCs), maitotoxin induced a substantial increase in [Ca2+](cyt), but only a modest and slower increase in [Ca2+](er). Under these conditions, Ca2+ inflow is predominantly through maitotoxin-activated NSCCs. It is concluded that SOCs are more effective than maitotoxin-activated NSCCs in refilling the endoplasmic reticulum Ca2+ stores. The previously developed concept of a specific role for SOCs in refilling the endoplasmic reticulum is consistent with the results reported here.  相似文献   

12.
Inhibition of muscle cell fusion in vitro by Mg2+ and K+ ions   总被引:2,自引:0,他引:2  
  相似文献   

13.
In the bright fields, stomata of the plants are fully opened to raise the transpiration rate and CO2 uptake required for photosynthesis. Stomatal opening is driven by the activation of plasma membrane H+-ATPase and K+in channels, and the Ca2+-dependent inactivation and blockage of both components were supposed to be inevitable function to regulate the stomatal aperture. Although, it is still obscure how these activities are regulated at the open state. Application of an amphipathic membrane creator, trinitrophenol (TNP), instantly generates the convex curvature in the plasma membrane, which occurs in the phases of stomatal opening and closure. TNP surely activates mechanosensitive Ca2+-permeable channels and attenuates the promotion of stomatal opening, but does not inhibit and promote stomatal closure. These results suggest that activation of mechanosensitive Ca2+-permeable channels regulates the opening phase of stomata in plants.  相似文献   

14.
The effects of quinine and tetraethylammonium (TEA) on single-channel K+ currents recorded from excised membrane patches of the insulin-secreting cell line RINm5F were investigated. When 100 microM quinine was applied to the external membrane surface K+ current flow through inward rectifier channels was abolished, while a separate voltage-activated high-conductance K+ channel was not significantly affected. On the other hand, 2 mM TEA abolished current flow through voltage-activated high-conductance K+ channels without influencing the inward rectifier K+ channel. Quinine is therefore not a specific inhibitor of Ca2+-activated K+ channels, but instead a good blocker of the Ca2+-independent K+ inward rectifier channel whereas TEA specifically inhibits the high-conductance voltage-activated K+ channel which is also Ca2+-activated.  相似文献   

15.
16.
The erythrocytes of the echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus), which are practically devoid of intracellular ATP content (1), were examined for active Rb86 influx and for the presence of Na+K+Mg ATPase. We found that intact erythrocytes of both species possess the ability to actively transport cations. Ouabain sensitive Rb86 influx in the echidna was approximately 0.17 μmoles/ml cells × hr, whereas the platypus exhibited a higher value of 0.43 μmoles/ml cells × hr. Surprisingly, ouabain sensitive Na+K+Mg ATPase activity of isolated membranes was high amounting to some 15 to 25 fold higher than the human erythrocyte counterpart determined under identical conditions. These findings suggest that a trace amount of ATP is sufficient to maintain active cation transport across the monotreme cell membranes.  相似文献   

17.
Although store-operated calcium release-activated Ca(2+) (CRAC) channels are highly Ca(2+)-selective under physiological ionic conditions, removal of extracellular divalent cations makes them freely permeable to monovalent cations. Several past studies have concluded that under these conditions CRAC channels conduct Na(+) and Cs(+) with a unitary conductance of approximately 40 pS, and that intracellular Mg(2+) modulates their activity and selectivity. These results have important implications for understanding ion permeation through CRAC channels and for screening potential CRAC channel genes. We find that the observed 40-pS channels are not CRAC channels, but are instead Mg(2+)-inhibited cation (MIC) channels that open as Mg(2+) is washed out of the cytosol. MIC channels differ from CRAC channels in several critical respects. Store depletion does not activate MIC channels, nor does store refilling deactivate them. Unlike CRAC channels, MIC channels are not blocked by SKF 96365, are not potentiated by low doses of 2-APB, and are less sensitive to block by high doses of the drug. By applying 8-10 mM intracellular Mg(2+) to inhibit MIC channels, we examined monovalent permeation through CRAC channels in isolation. A rapid switch from 20 mM Ca(2+) to divalent-free extracellular solution evokes Na(+) current through open CRAC channels (Na(+)-I(CRAC)) that is initially eightfold larger than the preceding Ca(2+) current and declines by approximately 80% over 20 s. Unlike MIC channels, CRAC channels are largely impermeable to Cs(+) (P(Cs)/P(Na) = 0.13 vs. 1.2 for MIC). Neither the decline in Na(+)-I(CRAC) nor its low Cs(+) permeability are affected by intracellular Mg(2+) (90 microM to 10 mM). Single openings of monovalent CRAC channels were not detectable in whole-cell recordings, but a unitary conductance of 0.2 pS was estimated from noise analysis. This new information about the selectivity, conductance, and regulation of CRAC channels forces a revision of the biophysical fingerprint of CRAC channels, and reveals intriguing similarities and differences in permeation mechanisms of voltage-gated and store-operated Ca(2+) channels.  相似文献   

18.
The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca2+-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd3+ or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca2+]i. Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca2+ channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca2+ influx to a small Ca2+-activated K+ channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics—while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca2+ signaling that may play a role in tumor progression.  相似文献   

19.
The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca2+-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd3+ or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca2+]i. Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca2+ channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca2+ influx to a small Ca2+-activated K+ channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics—while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca2+ signaling that may play a role in tumor progression.  相似文献   

20.
The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is expressed in many smooth muscle types, but its role in human detrusor smooth muscle (DSM) is unclear. With a multidisciplinary approach spanning channel molecules, single-channel activity, freshly isolated human DSM cells, intact DSM preparations, and the BK channel specific inhibitor iberiotoxin, we elucidated human DSM BK channel function and regulation. Native human DSM tissues were obtained during open surgeries from patients with no preoperative history of overactive bladder. RT-PCR experiments on single human DSM cells showed mRNA expression of BK channel α-, β(1)-, and β(4)-subunits. Western blot and immunocytochemistry confirmed BK channel α, β(1), and β(4) protein expression. Native human BK channel properties were described using the perforated whole cell configuration of the patch-clamp technique. In freshly isolated human DSM cells, BK channel blockade with iberiotoxin inhibited a significant portion of the total voltage step-induced whole cell K(+) current. From single BK channel recordings, human BK channel conductance was calculated to be 136 pS. Voltage-dependent iberiotoxin- and ryanodine-sensitive transient BK currents were identified in human DSM cells. In current-clamp mode, iberiotoxin inhibited the hyperpolarizing membrane potential transients and depolarized the cell resting membrane potential. Isometric DSM tension recordings revealed that BK channels principally control the contractions of isolated human DSM strips. Collectively, our results indicate that BK channels are fundamental regulators of DSM excitability and contractility and may represent new targets for pharmacological or genetic control of urinary bladder function in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号