共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we have examined the roles of alcohol dehydrogenase, aldehyde oxidase, and aldehyde dehydrogenase in the adaptation of Drosophila melanogaster to alcohol environments. Fifteen strains were characterized for genetic variation at the above loci by protein electrophoresis. Levels of in vitro enzyme activity were also determined. The strains examined showed considerable variation in enzyme activity for all three gene-enzyme systems. Each enzyme was also characterized for coenzyme requirements, effect of inhibitors, subcellular location, and tissue specific expression. A subset of the strains was chosen to assess the physiological role of each gene-enzyme system in alcohol and aldehyde metabolism. These strains were characterized for both the ability to utilize alcohols and aldehydes as carbon sources as well as the capacity to detoxify such substrates. The results of the above analyses demonstrate the importance of both alcohol dehydrogenase and aldehyde dehydrogenase in the in vivo metabolism of alcohols and aldehydes. 相似文献
2.
Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans 总被引:12,自引:0,他引:12
J A Pateman C H Doy J E Olsen U Norris E H Creaser M Hynes 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1983,217(1208):243-264
3.
The mechanism of acetaldehyde detoxification in Drosophila melanogaster adults has been studied by comparing physiological in vitro and in vivo data. ADH+ and ADH− flies, both lacking aldehyde dehydrogenase activity from ADH (ALDHADH, ALDH (ALDH) or both enzymes were exposed to acetaldehyde or ethanol, and the toxicity and internal accumulation of both compounds were determined. Acetaldehyde was extremely lethal for flies whose ALDH activity had been inhibited by cyanamide, though acetaldehyde was effectively detoxified by flies whose ALDHADH activity had been inhibited by acetone. After exposure to acetaldehyde, both acetaldehyde and ethanol rapidly accumulated in flies lacking ALDH activity, but not in flies lacking ALDHADH activity. However, ethanol but not acetaldehyde quickly accumulated in flies lacking ALDH activity after exposure to ethanol. Our results provide in vivo evidence that, as opposed to larvae, in D. melanogaster adults acetaldehyde is mainly oxidized into acetate by means of ALDH enzymes. However, the reducing activity of the ADH enzyme, which transforms acetaldehyde into ethanol, also plays an essential role in the detoxification of acetaldehyde. Differences in ALDH activity might be important to explain the differences in ethanol tolerance found in natural populations. 相似文献
4.
Hepatic aldehyde dehydrogenase activity in Peromyscus genetically deficient in alcohol dehydrogenase
M E Lebsack M R Felder C S Lieber 《Comparative biochemistry and physiology. B, Comparative biochemistry》1982,72(4):517-519
1. Hepatic aldehyde dehydrogenase (ALDH) activity was measured in two strains of deer-mouse, Peromyscus maniculatus. 2. There is no difference in the subcellular distribution of ALDH activity in the two strains. Animals of AdhN/AdhN genotype, lacking liver alcohol dehydrogenase (ADH), had 90% of total ALDH activity in the mitochondrial fraction compared to 94% for the AdhF/AdhF animals with normal ADH activity. Almost all of the remaining ALDH activity was in the hepatic cytosol with less than 1% in the microsomal fraction. 3. By contrast, in mice (Mus musculus) 43% of total hepatic ALDH activity was found in the cytosolic fraction and 55% in the mitochondrial. 4. It was concluded that the subcellular distribution of hepatic ALDH activity in Peromyscus does not vary with the presence or absence of ADH and that this ALDH distribution is not similar to that reported for other rodents. 相似文献
5.
Polymorphism of aldehyde dehydrogenase and alcohol sensitivity 总被引:6,自引:0,他引:6
The metabolism of acetaldehyde has received considerable attention in the past years owing to its acute and chronic toxic effects in humans. Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of acetaldehyde in liver and other organs. Two major isozymes of hepatic ALDH (ALDH I or E2 and ALDH II or E1), which differ in their structural and functional properties, have been characterized in humans. The ALDH I with a low Km for acetaldehyde is predominantly of mitochondrial origin and ALDH II which has a relatively higher Km is of cytosolic origin. An inherited deficiency of ALDH I isozyme has been found among Japanese and Chinese which is primarily responsible for producing acute alcohol sensitivity symptoms (flushing response) after drinking mild doses of alcohol. Biochemical, immunochemical and molecular genetics data indicate a structural mutation in the ALDH I isozyme gene responsible for the loss in catalytic activity. Population genetic studies indicate a wide prevalence of this ALDH polymorphism among individuals of Mongoloid race. Flushing response to alcohol shows familial resemblances and preliminary family data from Japan, China and Korea hint to an autosomal codominant inheritance for ALDH I isozyme deficiency. The ALDH polymorphism is apparently responsible for the low incidence of alcoholism in Japanese, Chinese and Koreans. Alcohol-induced sensitivity due to ALDH isozyme deficiency may act as an inhibitory factor against excessive alcohol drinking thereby imparting a protection against alcoholism. 相似文献
6.
The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200 总被引:1,自引:0,他引:1
A bifunctional aldehyde/alcohol dehydrogenase gene (adhE) from Thermoanaerobacter ethanolicus JW200 was identified and cloned. To unambiguously characterize the activity of AdhE, the recombinant protein was purified. The purified AdhE exhibited high enzymatic activity attributed to aldehyde dehydrogenase (11.0+/-0.3U/mg) and low alcohol dehydrogenase activity (2.6+/-0.2U/mg). Analysis of adhE homologous expression in T. ethanolicus showed that AdhE affected ethanol production. 相似文献
7.
The gene frequencies of ADH22and ALDH22were lower in Tibetan and Mongolian populations than in Vietnamese, Han Chinese, and three Chinese minority populations. 相似文献
8.
Kinetic studies of the liver alcohol dehydrogenase catalyzed dehydrogenation of aldehydes were carried out over a wide range of octanal concentrations. The effect of specific inhibitors of liver alcohol dehydrogenase on aldehyde dehydrogenase activity was examined. The results were consistent with a steady-state random mechanism with the formation of the ternary E · NADH octanal complex at low temperatures. This ternary complex becomes inconspicuous at high temperatures. The aldehyde dehydrogenase activity was found to associate with all ethanol-active isozymes. The dual dehydrogenase reactions are catalyzed by the same molecule, presumably in the region of the same domain. However, the two activities respond differently to structural changes. 相似文献
9.
T L Seeley P B Mather R S Holmes 《Comparative biochemistry and physiology. B, Comparative biochemistry》1984,78(1):131-139
Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AHD), aldehyde reductase (AHR), aldehyde oxidase (AOX) and xanthine oxidase (XOX) extracted from horse tissues were examined. Five ADH isozymes were resolved: three corresponded to the previously reported class I ADHs (EE, ES and SS) (Theorell, 1969); a single form of class II ADH (designated ADH-C2) and of class III ADH (designated ADH-B2) were also observed. The latter isozyme was widely distributed in horse tissues whereas the other enzymes were found predominantly in liver. Four AHD isozymes were differentially distributed in subcellular preparations of horse liver: AHD-1 (large granules); AHD-3 (small granules); and AHD-2, AHD-4 (cytoplasm). AHD-1 was more widely distributed among the horse tissues examined. Liver represented the major source of activity for most AHDs. A single additional form of NADPH-dependent AHR activity (identified as hexonate dehydrogenase), other than the ADHs previously described, was observed in horse liver. Single forms of AOX and XOX were observed in horse tissue extracts, with highest activities in liver. 相似文献
10.
The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae. 总被引:1,自引:0,他引:1
下载免费PDF全文

Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway. 相似文献
11.
I. P. Maly M. Arnold K. Krieger M. Zalewska D. Sasse 《Histochemistry and cell biology》1992,98(5):311-315
Using qualitative and microquantitative histochemical techniques, alcohol dehydrogenase and aldehyde dehydrogenase activity was studied in the gastric mucosa of male and female rats. Alcohol dehydrogenase was demonstrated by staining reactions with maximum activity in surface and neck cells and with clearly weaker activity also in parietal cells. Aldehyde dehydrogenase could be detected in surface and neck cells, and also to a comparable degree in the parietal cells. Quantitative analyses of microdissected samples yielded high values for alcohol dehydrogenase activity exclusively in the superficial part of the gastric mucosa, whereas low-Km aldehyde dehydrogenase activity showed a decreasing gradient from the surface to the deeper parts of the mucosa. Sex differences could not be confirmed.Dedicated to Professor Dr. K.S. Ludwig on the occasion of his 70th birthday 相似文献
12.
Takao Yamada Hiroyuki Nawa Susumu Kawamoto Atsuo Tanaka Saburo Fukui 《Archives of microbiology》1980,128(2):145-151
Long-chain alcohol dehydrogenase and longchain aldehyde dehydrogenase were induced in the cells of Candida tropicalis grown on n-alkanes. Subcellular localization of these dehydrogenases, together with that of acyl-CoA synthetase and glycerol-3-phosphate acyltransferase, was studied in terms of the metabolism of fatty acids derived from n-alkane substrates. Both longchain alcohol and aldehyde dehydrogenases distributed in the fractions of microsomes, mitochondria and peroxisomes obtained from the alkane-grown cells of C. tropicalis. Acyl-CoA synthetase was also located in these three fractions. Glycerol-3-phosphate acyltransferase was found in microsomes and mitochondria, in contrast to fatty acid -oxidation system localized exclusively in peroxisomes. Similar results of the enzyme localization were also obtained with C. lipolytica grown on n-alkanes. These results suggest strongly that microsomal and mitochondrial dehydrogenases provide long-chain fatty acids to be utilized for lipid synthesis, whereas those in peroxisomes supply fatty acids to be degraded via -oxidation to yield energy and cell constituents. 相似文献
13.
C S Liao J S Lin C P Chang T J Chao Y C Chao T C Cheng C W Wu S J Yin 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1991,15(2):92-96
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption. 相似文献
14.
Azotobacter vinelandii aldehyde dehydrogenase regulated by sigma(54): role in alcohol catabolism and encystment
下载免费PDF全文

Gama-Castro S Núñez C Segura D Moreno S Guzmán J Espín G 《Journal of bacteriology》2001,183(21):6169-6174
Encystment in Azotobacter vinelandii is induced by n-butanol or beta-hydroxybutyrate (BHB). We identified a gene, encoding an aldehyde dehydrogenase, that was named aldA. An aldA mutation impaired bacterial growth on n-butanol, ethanol, or hexanol as the sole carbon source. Expression of aldA increased in cells shifted from sucrose to n-butanol and was shown to be dependent on the alternative sigma(54) factor. A mutation in rpoN encoding the sigma(54) factor also impaired growth on alcohols. Encystment on n-butanol, but not on BHB, was impaired in aldA or rpoN mutants, indicating that n-butanol is not an inducer of encystment by itself but must be catabolized in order to induce encystment. 相似文献
15.
Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria 总被引:1,自引:0,他引:1
Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. 相似文献
16.
Aldehyde dehydrogenase possessing an esterolytic activity has been purified to homogeneity from rat liver mitochondria. Steady-state kinetic studies suggest that the esterolytic reaction follows an ordered uni-bi mechanism. The formation of an acyl enzyme intermediate via nucleophilic catalysis during the esterase reaction is established kinetically using a series of substrates with varying acyl carbon chains and substituted phenyl octanoates with varying electronic effects. The enzyme was reconstituted into phospholipid vesicles. A significant increase in binding capacity is observed when the enzyme is encapsulated into liposomes containing 4% diphosphatidylglycerol. 相似文献
17.
Studies of pH-dependent kinetics implicate two ionizable groups in the dehydrogenase and esterase reactions catalysed by high-Km aldehyde dehydrogenase from rat liver mitochondria. Sensitized photooxidation completely arrests the bifunctional activities of the dehydrogenase. Carboxamidomethylation abolishes the dehydrogenase activity, whereas acetimidination eliminates the esterase activity. These results suggest that histidine (pKa near 6) and cysteine (pKa near 10) are likely the catalytic residues for the dehydrogenase activity, while the esterase activity is functionally related to histidine (pKa near 7) and a residue with the pKa value of 10-11. The two residues, a carboxyl group and an arginine, that discriminate between NAD+ and NADP+ are present at the coenzyme binding site of the mitochondrial high-Km aldehyde dehydrogenase from rat liver. 相似文献
18.
Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. 相似文献
19.
Using qualitative and microquantitative histo-chemical techniques, alcohol dehydrogenase and aldehyde dehydrogenase activity was studied in the gastric mucosa of male and female rats. Alcohol dehydrogenase was demonstrated by staining reactions with maximum activity in surface and neck cells and with clearly weaker activity also in parietal cells. Aldehyde dehydrogenase could be detected in surface and neck cells, and also to a comparable degree in the parietal cells. Quantitative analyses of microdissected samples yielded high values for alcohol dehydrogenase activity exclusively in the superficial part of the gastric mucosa, whereas low-Km aldehyde dehydrogenase activity showed a decreasing gradient from the surface to the deeper parts of the mucosa. Sex differences could not be confirmed. 相似文献
20.
1. Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase, sorbitol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase extracted from tissues of inbred mice were examined. 2. ADH isozymes were differentially distributed in mouse tissues: A2--liver, kidney, adrenals and intestine; B2--all tissues examined; C2--stomach, adrenals, epididymis, ovary, uterus, lung. 3. Two NAD+-specific aldehyde dehydrogenase isozymes were observed in liver and kidney and differentially distributed in other tissues. Alcohol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase were also stained when aldehyde dehydrogenase was being examined. 4. Two aldehyde oxidase isozymes exhibited highest activities in liver. 5. "Phenazine oxidase" was widely distributed in mouse tissues whereas xanthine oxidase exhibited highest activity in intestine and liver extracts. 6. Genetic variants for ADH-C2 established its identity with a second form of sorbitol dehydrogenase observed in stomach and other tissues. The major sorbitol dehydrogenase was found in high activity in liver, kidney, pancreas and male reproductive tissues. 相似文献