首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel NADH-dependent, soluble flavoreductase of 60 kDa, active toward ferric chelates and quinones, has been purified from maize seedlings. Two closely related isoforms were separated. The two isoforms are similar in several biochemical features, with the exception of the apparent molecular mass of their subunits (29 and 31 kDa, respectively). They are homodimers in the native state, they bind FAD as the prosthetic group and show strong preference for NADH over NADPH as the electron donor. Ferric chelates (chiefly ferric citrate, Km 3-5 x 10(-5) M; kcat/Km 3.4-3.7 x 10(5) M-1 s-1), and some quinones (benzoquinone, coenzyme Q-0, and juglone) are used as electron acceptors. Enzymatic reduction of benzoquinone occurs with formation of radical semiquinones. Both soluble ferric chelate reductase isoforms are strongly inhibited by p-hydroxymercuribenzoic acid (I50 5 nM) and by cibachron blue, the latter giving nonlinear inhibition. It is suggested that soluble ferric chelate reductase might be involved in the symplastic reduction of iron chelates which is required for the assembly of iron-containing macromolecules such as cytochromes and ferritin.  相似文献   

2.
In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.  相似文献   

3.
4.
The properties of NADH-dependent Fe3+-EDTA reductase in plasma membranes (PM) from roots of iron-deficient and -sufficient tomato plants [Lycopersicon esculentum L. (Mill.) cv. Abunda] were examined. Iron deficiency resulted in a 3-fold increase of in vivo root iron-chelate reductase activity with a Km (Fe3+-EDTA) of 230 μM. In purified root PM, average specific activities of ferric chelate reductase of 410 and 254 nmol Fe (mg protein)?1 min?1 were obtained for iron-deficient and -sufficient plants, respectively. In both cases, the PM-bound activity showed a pH optimum at pH 6.8. Activity depended on NADH and not on NADPH and on the presence of detergent. The activity was inhibited 40-50% by superoxide dismutase (EC 1.15.1.1) and ca 30% by oxygen. Kinetic analysis of the membrane-bound enzyme revealed a Km (Fe3+-EDTA) of ca 200 μM for both iron-stressed and -sufficient plants. For NADH, Km values around 230 μM were obtained. The ferric chelate reductase could be solubilised from salt-washed PM with Triton X-100 at a protein:detergent ratio of 1:2.8 (w/w). The Triton-soluble fraction revealed one enzyme-stained band in native polyacrylamide electrophoresis. Although the membranes showed no nitrate reductase (NR; EC 1.6.6.1) activity, anti-spinach NR immunoglobulin G (IgG) recognized a 54 kDa band both in the PM and the Triton-soluble fraction, but not in the enzymatically active material obtained from the native gel. No evidence could be found for the synthesis of a new, biochemically distinct PM-bound ferric chelate reductase under iron deficiency, which might be identified as the so-called Turbo reductase. It is concluded that iron deficiency in tomato induces increased expression of a ferric chelate reductase in root PM, which is already present in iron-sufficient plants and probably also in plants, which do not contain the Turbo reductase, like the grasses. The iron reductase is not identical with the recently reported PM-associated nitrate reductase.  相似文献   

5.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

6.
Ferric leghemoglobin reductase from soybean root nodules   总被引:5,自引:0,他引:5  
An NADH: (acceptor) oxidoreductase from the cytosol of soybean root nodules was purified by ammonium sulfate fractionation, hydroxylapatite adsorption, and Sephacryl S-200 Superfine chromatography. The native molecular weight of the reductase was found to be 100,000 by analytical gel filtration and 83,000 by equilibrium ultracentrifugation. The subunit molecular weight was 54,000 as determined by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The pI of the enzyme was 5.5. With ferric leghemoglobin (Lb) as the substrate, nearly identical initial velocities were obtained using either CO or O2 to ligate the enzymatically produced ferrous leghemoglobin. With CO as the ligand in the reaction, the product of the enzyme-catalyzed, NADH-dependent reduction of ferric Lb was spectrally identified as LbCO. Initial velocity was a linear function of increasing enzyme concentration. NADPH was only 31% as effective an electron donor as NADH as determined by initial velocity. The Michaelis constants (Km) for ferric Lba and NADH were 9.5 and 18.8 microM, respectively. Myoglobin, Lba, Lbc1, Lbc2, Lbc3, and Lbd were reduced at similar rates by the reductase. At pH 5.2, acetate-bound ferric Lb and nicotinate-bound ferric Lb were reduced by the enzyme at 83 and 5%, respectively, of rates observed in the absence of these ligands. The rate of enzymatic reduction of ferric Lb was constant between pH 6.5 and 7.6 but increased approximately threefold at pH 5.2. The results indicate that the NADH: (acceptor) oxidoreductase could be identified as a ferric Lb reductase.  相似文献   

7.
Ferric iron reductase was purified from magnetotactic bacterium Magnetospirillum (formerly Aquaspirillum) magnetotacticum (ATCC 31632) to an electrophoretically homogeneous state. The enzyme was loosely bound on the cytoplasmic face of the cytoplasmic membrane and was found more frequently in magnetic cells than in nonmagnetic cells. The molecular mass of the purified enzyme was calculated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be about 36 kDa, almost the same as that calibrated by gel filtration analysis. The enzyme required NADH and flavin mononucleotide (FMN) as optimal electron donor and cofactor, respectively, and the activity was strongly inhibited by Zn2+ acting as a partial mixed-type inhibitor. The Km values for NADH and FMN were 4.3 and 0. 035 microM, respectively, and the Ki values for Zn2+ were 19.2 and 23.9 microM for NADH and FMN, respectively. When the bacterium was grown in the presence of ZnSO4, the magnetosome number in the cells and the ferric iron reductase activity declined in parallel with an increase in the ZnSO4 concentration of the medium, suggesting that the ferric iron reductase purified in the present study may participate in magnetite synthesis.  相似文献   

8.
The nitric oxide reductase of Paracoccus denitrificans.   总被引:7,自引:0,他引:7       下载免费PDF全文
The nitric oxide (NO) reductase activity of the cytoplasmic membrane of Paracoccus denitrificans can be solubilized in dodecyl maltoside with good retention of activity. The solubilized enzyme lacks NADH-dependent activity, but can be assayed with isoascorbate plus 2,3,5,6-tetramethylphenylene-1,4-diamine as electron donor and with horse heart cytochrome c as mediator. Reduction of NO was measured with an amperomeric electrode. The solubilized enzyme could be separated from other electron-transport components, including the cytochrome bc1 complex and nitrite reductase, by several steps of chromatography. The purified enzyme had a specific activity of 11 mumols.min-1.mg of protein-1 and the Km(NO) was estimated as less than 10 microM. The enzyme formed N2O from NO with the expected stoichiometry. These observations support the view that NO reductase is a discrete enzyme that participates in the denitrification process. The enzyme contained both b- and c-type haems. The former was associated with a polypeptide of apparent molecular mass 37 kDa and the latter with a polypeptide of 18 kDa. Polypeptides of 29 and 45 kDa were also identified in the purified protein which showed variable behaviour on electrophoresis in polyacrylamide gels.  相似文献   

9.
Tucci S  Martin W 《FEBS letters》2007,581(8):1561-1566
An NADH-dependent trans-2-enoyl-CoA reductase (EC1.1.1.36) from the Gram negative spirochete Treponema denticola was identified, expressed and biochemically characterized. The recombinant protein is a monomeric enzyme with a molecular mass of 44 kDa with a specific activity of 43+/-4.8 U/mg (micromol mg(-1)min(-1)) and K(m) value of 2.7 microM for crotonoyl-CoA. This NADH-dependent trans-2-enoyl-CoA reductase represents the first enzymatically characterized member of a prokaryotic protein family involved in a fatty acid synthesis pathway that is distinct from the familiar fatty acid synthase system.  相似文献   

10.
Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP+ reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k cat/K m value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k cat/K m value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.  相似文献   

11.
It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km 7.73 × 10−6 M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10 kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500 Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.  相似文献   

12.
13.
Ferric reductase activity was examined in Azotobacter vinelandii and was found to be located in the cytoplasm. The specific activities of soluble cell extracts were not affected by the iron concentration of the growth medium; however, activity was inhibited by the presence of Zn2+ during cell growth and also by the addition of Zn2+ to the enzyme assays. Intracellular Fe2+ levels were lower and siderophore production was increased in Zn2+-grown cells. The ferric reductase was active under aerobic conditions, had an optimal pH of approximately 7.5, and required flavin mononucleotide and Mg2+ for maximum activity. The enzyme utilized NADH to reduce iron supplied as a variety of iron chelates, including the ferrisiderophores of A. vinelandii. The enzyme was purified by conventional protein purification techniques, and the final preparation consisted of two major proteins with molecular weights of 44,600 and 69,000. The apparent Km values of the ferric reductase for Fe3+ (supplied as ferric citrate) and NADH were 10 and 15.8 microM, respectively, and the data for the enzyme reaction were consistent with Ping Pong Bi Bi kinetics. The approximate Ki values resulting from inhibition of the enzyme by Zn2+, which was a hyperbolic (partial) mixed-type inhibitor, were 25 microM with respect to iron and 1.7 microM with respect to NADH. These results suggested that ferric reductase activity may have a regulatory role in the processes of iron assimilation in A. vinelandii.  相似文献   

14.
The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.  相似文献   

15.
A ferric leghemoglobin reductase from the cytosol of soybean (Glycine max) root nodules was purified to homogeneity and partially characterized. The enzyme is a flavoprotein with flavin adenine dinucleotide as the prosthetic group and consists of two identical subunits, each having a molecular mass of 54 kilodaltons. The pure enzyme shows a high activity for ferric leghemoglobin reduction with NADH as the reductant in the absence of any exogenous mediators. The enzyme also exhibits NADH-dependent 2,6-dichloroindophenol reductase activity. A sequence of the first 50 N-terminal amino acids of the purified protein was obtained. Comparisons with known protein sequences have shown that the sequence of the ferric leghemoglobin reductase is highly related to those of the flavin-nucleotide disulfide oxido-reductases, especially dihydrolipoamide dehydrogenase of the pyruvate dehydrogenase complex.  相似文献   

16.
Reduction of ferric citrate catalyzed by NADH:nitrate reductase   总被引:1,自引:0,他引:1  
We show that NADH:nitrate reductase from squash cotyledons can catalyze the reduction of ferric citrate. When nitrate reductase was purified to homogeneity using a two-step affinity chromatography procedure, an NADH:Fe(III)-citrate reductase activity copurified with it and had identical electrophoretic mobility to it. The iron reductase activity was optimum near pH 6.3, had an apparent Km for Fe(III)-citrate of 0.02 mM, and was inhibited by monospecific anti-nitrate reductase rabbit sera. Differential inhibition of the enzyme's activities indicated iron and nitrate were reduced at different sites. In addition to its role in nitrogen assimilation, nitrate reductase catalyzes ferric citrate reduction and could have a role in iron assimilation.  相似文献   

17.
Nitric oxide (NO) reductase was purified from Ralstonia eutropha (formerly Alcaligenes eutrophus) using a two step chromatographic procedure. Unlike the common NO reductases, the enzyme consists of a single subunit of 75 kDa which contains both high-spin and low-spin heme b, but lacks heme c. One additional iron atom, probably a ferric non-heme iron, was identified per enzyme molecule. Whereas reduced cytochrome c was ineffective as electron donor, NO was reduced at a specific activity of 2.3 micromol/min per mg of protein in the presence of 2-methyl-1,4-naphthoquinol.  相似文献   

18.
Abstract The expression and distribution of ferric reductase activity was examined in Shewanella putrefaciens MR-1. Formate-dependent ferric reductase was not detected in aerobically grown cells but was readily detectable in anaerobically grown cells. Ferric reductase activity was found exclusively in the membrane fractions, with 54–56% in the outer membrane. In contrast, the majority of formate dehydrogenase was in the soluble fraction with lesser amounts associated with the various membrane fractions. Outer membrane ferric reductase activity was markedly inhibited by p -chloromercuriphenylsulfonate, 2-heptyl-4-hydroxyquinolone- N -oxide, and antimycin A, but was unaffected by the presence of alternate electron acceptors (nitrate, nitrite, fumarate, and trimethylamine N -oxide). Both formate and NADH served as electron donors for ferric reductase; activity with l -lactate or NADPH was poor. The addition of FMN markedly stimulated formate- and NADH-dependent ferric reductase.  相似文献   

19.
20.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号