共查询到20条相似文献,搜索用时 0 毫秒
1.
Saccone C Caggese C D'Erchia AM Lanave C Oliva M Pesole G 《Journal of molecular evolution》2003,57(Z1):S277-S285
Molecular phylogenies based on the molecular clock require the comparison of orthologous genes. Orthologous and paralogous genes usually have very different evolutionary fates. In general, orthologs keep the same functions in species, whereas, particularly over a long time span, paralogs diverge functionally and may become pseudogenes or get lost. In eukaryotic genomes, because of the degree of redundancy of genetic information, homologous genes are grouped in gene families, the evolution of which may differ greatly between the various organisms. This implies that each gene in a species does not always have an ortholog in another species and thus, due to multiple duplication events following a speciation, many orthologous clades of paralogs are generated. We are often dealing with a one-to-many or many-to-many relationship between genes. In this paper, we analyze the evolution of two gene families, the p53 gene family and the porin gene family. The evolution of the p53 family shows a one-to-many gene relationship going from invertebrates to vertebrates. In invertebrates only a single gene has been found, while in vertebrates three members of the family, namely p53, p63, and p73, are present. The evolution of porin (VDAC) genes (VDAC1, VDAC2, and VDAC3) is an example of a many-to-many gene relationship going from yeast to mammals. However, the porin gene redundancy found in invertebrates and possibly in some fishes may indicate a tendency to duplicate the genetic material, rather than a real need for function innovation. 相似文献
2.
动物昼夜生物钟的分子机制 总被引:1,自引:0,他引:1
动物的昼夜生物钟是一种十分重要的生物节律,对生物对环境的适应有着重要的意义。昼夜节律是一种综合适应,它体现在个体、器官、组织等不同的水平上。最近20几年来.人们通过对果蝇和鼠的昼夜生物钟振荡子的研究,逐渐揭示了动物生物钟的负反馈回路的分子机制。 相似文献
3.
4.
5.
Molecular cogs of the insect circadian clock 总被引:1,自引:0,他引:1
6.
Molecular evolutionary clock and the neutral theory 总被引:6,自引:0,他引:6
Motoo Kimura 《Journal of molecular evolution》1987,26(1-2):24-33
Summary From the standpoint of the neutral theory of molecular evolution, it is expected that a universally valid and exact molecular evolutionary clock would exist if, for a given molecule, the mutation rate for neutral allelesper year were exactly equal among all organisms at all times. Any deviation from the equality of neutral mutation rate per year makes the molecular clock less exact. Such deviation may be due to two causes: one is the change of the mutation rate per year (such as due to change of generation span), and the other is the alteration of the selective constraint of each molecule (due to change of internal molecular environment). A statistical method was developed to investigate the equality of evolutionary rates among lineages. This was used to analyze protein data to demonstrate that these two causes are actually at work in molecular evolution. It was emphasized that departures from exact clockwise progression of molecular evolution by no means invalidates the neutral theory. It was pointed out that experimental studies should be done to settle the issue of whether the mutation rate for nucleotide change is more constant per year or per generation among organisms whose generation spans are very different. 相似文献
7.
8.
Molecular machinery of the circadian clock in mammals 总被引:11,自引:0,他引:11
9.
Liu Y 《Journal of biological rhythms》2003,18(3):195-205
Light and temperature are 2 of the most important environmental influences on all circadian clocks, and Neurospora provides an excellent system for understanding their effects. Progress made in the past decade has led to a basic molecular understanding of how the Neurospora clock works and how environmental factors influence it. The purpose of this review is to summarize what we currently know about the molecular mechanism of light and temperature entrainment in Neurospora. 相似文献
10.
11.
12.
13.
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point. 相似文献
14.
15.
The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo. 相似文献
16.
17.
18.
Circadian clock proteins are modified in many different ways. The best-studied posttranslational modification is phosphorylation, with well-known kinases and phosphatases regulating the function and stability of clock proteins. Degradation of these proteins usually involves ubiquitylation or sumoylation, and some of the relevant E3 ligases are known. In addition, Hirayama et al. recently identified acetylation as a clock regulatory mechanism. 相似文献
19.