首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four typical EMG amplifiers were tested quantitatively to observe the diversity and specificity of available equipment. Gain, phase, common mode rejection ratio (CMRR) and noise characteristics were measured for each device. Various gain and phase responses were observed, each best suited to specific application areas. For all amplifiers, the CMRR was shown to decrease dramatically in the presence of input impedance mismatches of more than 10 kΩ between the two electrodes. Because such impedance mismatches are common on the skin surface, these results indicate that proper skin preparation is required to maximize the noise rejection capabilities of the tested amplifiers.  相似文献   

2.
The study analyses the two-dimensional distribution of surface mechanomyographic (MMG) signal generated by the activation of single motor units located in three transverse positions in the tibialis anterior muscle. In 12 healthy volunteers, surface MMG signals were recorded from the tibialis anterior muscle with a 3x4 grid of accelerometers spaced by 20 and 30mm in the transverse and longitudinal direction. Three intramuscular electromyographic (EMG) signals were recorded with wire electrodes inserted 20-mm apart, between the first and second most proximal accelerometers of each column of the grid. The subject was asked to activate three different motor units (target motor units) in three contractions with visual feedback from each of the three intramuscular recordings (three locations). The MMG signals from the 12 accelerometers were averaged using the intramuscular single motor unit action potentials as trigger in order to obtain surface motor unit acceleration maps (MUAMs). The peak-to-peak value of the averaged MMG depended on motor unit location (P<0.001) and on the transverse position of the accelerometer in the grid (P<0.05). Moreover, MUAM amplitude depended on the interaction between motor unit location and transverse accelerometer position (P<0.05), demonstrating an influence of motor unit location on the generated MUAM. The observed dependency of MUAMs on motor unit location provides a quantitative analysis of the effect of the volume conductor on the recorded surface MMG signal.  相似文献   

3.
Electromyograms (EMGs) are measured by bipolar surface electrodes that quantify potential differences. Bipolar potentials over penniform muscles may be associated with errors. Our assumption was that muscle activity can be quantified more reliably and with a higher spatial resolution using current measurements.The purpose of this work is: (a) to introduce the concept of current measurements to detect muscle activity, (b) to show the coherences observed over a segment of a typical penniform muscle, the gastrocnemius medialis where one would expect a synchronicity of the activation, and (c) to show the amount of mixing that is caused by the finite inter electrode resistance.A current amplifier was developed. EMGs were recorded at 40% of maximum voluntary contraction during isometric contractions of the gastrocnemius medialis. EMGs of twelve persons were recorded with an array of four peripheral and one central electrode. Monopolar EMGs were recorded for “all-potential”, “center at current” and “all-current” conditions. Coherence revealed the similarity of signals recorded from neighboring electrodes.Coherence was high for the “all-potential”, significant for the “current at center” condition and disappeared in the “all-current” condition.It was concluded that EMG array recordings strongly depends on the measurement configuration. The proposed current amplifier significantly improves spatial resolution of EMG array recordings because the inter-electrode cross talk is reduced.  相似文献   

4.
The purpose of this study was to examine the electromyographic (EMG) instantaneous amplitude (IA) and instantaneous mean power frequency (IMPF) patterns for the biceps brachii muscle across a range of motion during maximal and submaximal concentric isokinetic muscle actions of the forearm flexors. Ten adults (mean +/- SD age = 22.0 +/- 3.4 years) performed a maximal and a submaximal [20% peak torque (PT)] concentric isokinetic forearm flexion muscle action at a velocity of 30 degrees s(-1). The surface EMG signal was detected from the biceps brachii muscle with a bipolar electrode arrangement, and the EMG IA and IMPF versus time relationships were examined for each subject using first- and second-order polynomial regression models. The results indicated that there were no consistent patterns between subjects for EMG IA or IMPF with increases in torque across the range of motion. Some of the potential nonphysiological factors that could influence the amplitude and/or frequency contents of the surface EMG signal during a dynamic muscle action include movement of the muscle fibers and innervation zone beneath the skin surface, as well as changes in muscle fiber length and the thickness of the tissue layer between the muscle and the recording electrodes. These factors may affect the EMG IA and IMPF patterns differently for each subject, thereby increasing the difficulty of drawing any general conclusions regarding the motor control strategies that increase torque across a range of motion.  相似文献   

5.
Full and productive activation of T lymphocytes relies on the simultaneous delivery of T cell receptor (TCR)- and coreceptor-derived signals. In na?ve T cells engagement of the TCR alone causes anergy, while TCR triggering of preactivated T cells results in activation-induced cell death. Costimulatory signals are prominently mirrored by the activation of NF-kappaB, which needs input from the TCR as well as from coreceptors in order to be fully activated and to fulfil its crucial function in the immune response. Coreceptor-generated signals tightly control the duration and amplitude of the NF-kappaB response. The activation of IkappaB kinase (IKK) complex at the contact zone between a T cell and an antigen-presenting cell offers the unique opportunity to study the spatial organization of IKK activation. Recent studies indicate that coreceptor pathways influence the threshold activities of many signalling mediators and thus act on multiple layers of the NF-kappaB pathway.  相似文献   

6.
The electromyographical (EMG) response to isometric ramp contractions of the right arm, the left arm, and both arms was studied using four pairs of surface electrodes above the right upper trapezius muscle (UT) of six men and six women. Contractions were made against gravity with the active arm(s) in eight positions, ranging from flexion to abduction. To describe arm positions, new, simple terminology was developed. Root mean square (rms)-converted EMG-signals were normalized (EMGnorm) with respect to a reference contraction. The EMGnorm corresponding to a 15 N.m torque in the right glenohumeral (GH) joint was strongly related to the position of the right arm (P less than 0.001). The shape of this relationship depended on the electrode position (P less than 0.001). The ratio between EMGnorm at 30 N.m and 15 N.m GH torques was related to arm position (P less than 0.001) and differed between electrodes (P less than 0.001). A left-side GH torque resulted in right-side (contralateral) EMG activity, typically corresponding to 20%-30% of that obtained during similar right-side GH torque. Bilateral GH torque implied 0%-50% increase in EMG activity as compared to that obtained with the right arm alone. The results have shown that signals from one pair of surface electrodes above UT cannot be taken as representative of the EMG activity from electrodes located elsewhere above UT. The EMG recordings reflected a complex pattern of muscular activation, significantly related to both outwardly visible factors (arm position, GH torque), and within-body servosystems (motor control reflexes).  相似文献   

7.
It has been widely accepted that T cell activation requires two signals; one from the binding of the antigen/major histocompatibility complex to the T-cell receptor (TCR)/CD3 complex and the other from the interaction between a surface molecule on antigen presenting cells and its receptor on T cells. The second signal is considered as co-stimulatory and the B7/CD28 pair has been well studied as a prototype. Recently 4-1BB (CD137) has been characterized as another co-stimulatory molecule for T cell activation. However, unlike the CD28/B7 pair, 4-1BB and its ligand 4-1BBL constitute a member of the tumor necrosis factor (TNF) receptor/TNF pair superfamily. The signaling mechanism of 4-1BB has not been revealed in detail. To investigate whether 4-1BB takes the signaling pathways analogous to those for TNF receptors, we generated polyclonal antibodies against human 4-1BB and 4-1BBL and established stable transfectants of the receptor and the ligand with a high level of cell surface expression. Over-expression of h4-1BB was found to result in the activation of c-Jun N-terminal kinase (JNK) in the human embryonic kidney cell line 293. In T cells, it has been previously demonstrated that JNK activation requires dual signals such as the ligation of TCR/CD3 complex plus CD28 co-stimulation or PMA plus ionomycin. The JNK activation by 4-1BB in Jurkat T cells was also found to require stimulation of the TCR/CD3 complex, consistent with the notion that 4-1BB functions as a co-stimulatory molecule for T cell activation.  相似文献   

8.
In the developing thymus, strong T cell receptor (TCR) activation by self-antigensinduces negative selection and weak TCR activation induces positive selection. Bothprocesses are mediated by Ca2+ signals, raising the question of how a single secondmessenger like Ca2+ can mediate such diverse cell fates. Recent findings indicate thatgraded TCR activation signals are encoded in distinct patterns of Ca2+ elevation. Theanti-apoptotic protein Bcl-2 discriminates between these Ca2+ signaling patterns,selectively inhibiting pro-apoptotic Ca2+ signals induced by strong TCR activationwithout suppressing pro-survival Ca2+ signals induced by weak TCR activation.  相似文献   

9.
10.
Binding of Ag by the Ag receptor in combination with other stimuli provided by costimulatory receptors triggers the expansion and differentiation of T lymphocytes. However, it is unclear whether the time when costimulatory molecules interact with their counterreceptors with regards to Ag recognition leads to different T cell responses. Provided that the coreceptor molecule CD43 is a very abundant molecule evenly distributed on the membrane of T cell surface protruding 45 nm from the cell, we hypothesized that CD43 is one of the first molecules that interacts with the APC and thus modulates TCR activation. We show that engaging CD43 before or simultaneously with the TCR inhibited Lck-Src homology 2 domain containing phosphatase-1 interaction, preventing the onset of a negative feedback loop on TCR signals, favoring high levels of IL-2, cell proliferation, and secretion of proinflammatory cytokines and chemokines. In contrast, the intracellular signals resulting of engaging the TCR before CD43 were insufficient to induce IL-2 production and cell proliferation. Interestingly, when stimulated through the TCR and CD28, cells proliferated vigorously, independent of the order with which molecules were engaged. These results indicate that CD43 induces a signaling cascade that prolongs the duration of TCR signaling and support the temporal summation model for T cell activation. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune T cell signal quality, and ultimately immune function.  相似文献   

11.
A standard calcium phosphate technique was used to obtain transient expression of cDNAs for rat liver cytochrome P450s in COS-1 cells. Cells transfected with a pMT2-based vector expressing P450IA2 cDNA (pMT2-IA2) had high acetanilide-4-hydroxylase activity and very low aryl hydrocarbon hydroxylase (AHH) activity. Cells transfected with a hybrid expression vector, pMT2-IA2/IA1, coding for a P450IA2/IA1 fusion protein (consisting of the amino-terminal region of P450IA2 and the central and carboxy-terminal regions of P450IA1) had high AHH activity. This result and other data indicate that the P450IA2/IA1 fusion protein has the substrate specificity of P450IA1. Extracts of cells transfected with pMT2-IA2 readily converted 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and related food-derived promutagens into mutagenic forms. Extracts of cells transfected with pMT2-IA2/IA1 showed efficient activation of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp P-2). To facilitate comparison of activities of P450s synthesized from cDNA expression vectors, the promutagen activation assays were carried out with limiting enzyme and saturating or nearly saturating substrate concentrations. The transient expression system described here uses a standard expression vector and requires only microgram quantities of cell extract protein for activation of food-derived promutagens such as MeIQ and Trp P-2. It will be useful for identifying P450s active in promutagen activation and for analyzing structure-function relationships of different P450 molecules.  相似文献   

12.
When monitoring bioelectric signals the surface electrodes can cause a retroaction on the subject thereby introducing an error of measurement. There are two types of retroaction: physical and psycho-physiological. A physical retroaction due to the hydration process of the skin occurs if 'wet' electrodes are used for the recording of the skin conductance level (SCL) causing a continuous drift of the SCL and a decrease in sensitivity to SCL changes. Therefore a dry electrode was developed with improved performance: It exhibits less sensitivity to motion, is not subject to polarization, and features better SCL long-term stability. When recording the electrocardiogram or the electromyogram a psychophysiological retroaction occurs due to the annoyance caused by the skin-irritating abrading techniques in order to decrease the skin impedance and reduce the motion artifact. In an attempt to abandon the skin preparation whenever permissible without sacrificing the measurement accuracy a performance estimation procedure was developed. Basing on the information on the signal frequency content, the electrode contact area, the required accuracy of measurement and the amplifier input impedance a decision on the necessity of skin preparation is made. Moreover, the results of a study are reported investigating the reduction of motion artifacts by means of electrode design and appropriate electrode jelly formulation.  相似文献   

13.
Ly-6A is a glycosyl-phosphatidylinositol (GPI)-anchored molecule that participates in murine T cell activation. Activation of T cell hybridomas with anti-Ly-6A monoclonal antibody (mAb) leads to production of interleukin-2 (IL-2), but also to a paradoxical growth inhibition, which was used to select for signaling mutants. Fifteen subclones derived from two independent mutageneses and anti-Ly-6A selection were characterized. Thirteen subclones responded poorly or not at all to soluble anti-Ly-6A mAb. Although the selective pressure was exerted through Ly-6A, only one mutant did not express the Ly-6A antigen. Interestingly, 10 of the 15 subclones expressed either nondetectable or a very low level of T cell receptor/CD3 complex (TCR/CD3). Preferential expansion of TCR/CD3 expression mutants following anti-Ly-6A selection further established functional linkage between Ly-6A and TCR/CD3 complex. The mechanism of the functional coupling was investigated by analyzing the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), one of the early events in T cell activation. We showed that PIP2 was not hydrolyzed in response to anti-Ly-6A in TCR/CD3-negative mutants. Aluminum fluoride, which activates G protein directly, did induce PIP2 hydrolysis in these cells. These data suggest that activation signals originated from Ly-6A must be transmitted first to TCR/CD3 complex, which then couples to the G protein/phospholipase C system. A similar requirement also applies to the Thy-1 protein and lectin receptors. Thus, the TCR/CD3 complex plays a central role in the integration and transmission of activation signals that originated from several T cell surface molecules.  相似文献   

14.
Branched surface EMG electrodes are bipolar electrodes with the hot signal pole referenced to two or more short-circuited leading-off surfaces. This technique provides stable recording of single motor unit potentials during real movements, up to maximal muscle contractions. The selective characteristic of branched electrodes is based on the same principles as the double differential detection system and spatial filtering technique proposed later. Equi-weight calculations to assess the selectivity of different electrode types and their position are used. The main advantage of branched electrodes, especially high stability, is achieved by the wire electrode version. The design, manufacture, implementation, and application of wire electrodes are discussed in detail. During recording of motor unit potentials, electrodes are positioned subcutaneously over the muscle fascia. This positioning maximizes electrode stability. Appropriate orientation of the electrode relative to the muscle architecture ensures adequate selectivity for single motor unit recordings. Branched electrodes require ordinary EMG equipment (two or even one amplifier).  相似文献   

15.
T cell (TC) activation requires the coordinated signaling of the T cell receptor (TCR) and coreceptor molecules, allowing TCs to respond to lower degrees of TCR occupancy. Coreceptor molecules set the threshold for TC activation by controlling different regulatory signaling loops. The Cbl family members prevent undesired activation of T cells by regulating TCR signals. In this report, we show that TC prestimulation by the CD43 coreceptor molecule before TCR engagement inhibits TCR-dependent c-Cbl tyrosine phosphorylation, c-Cbl interaction with the adapter molecule Crk-L and promotes Cbl-b degradation in a PKCθ-dependent manner. Consequently, the prolonged tyrosine phosphorylation and delayed degradation of ZAP-70 and of the ζ chain lead to enhanced mitogen-activated protein kinase activation and robust TC response. These data indicates that CD43-mediated signals lower the threshold for TC activation by restricting the c-Cbl and Cbl-b inhibitory effects on TCR signaling. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune TC signal quality, and ultimately immune function.  相似文献   

16.
The molecular pathways that are responsible for delivering the proliferative signals from the cell surface to the nucleus in T lymphocytes are still unresolved, but recent data implicates protein kinase C (PKC) involvement in the TCR signaling pathway. To further address the role of PKC in T cell activation, the effects of high level expression of the PKC-gamma isoenzyme in murine CTL clones were examined. Unlike the parental cells that required periodic Ag stimulation for cell activation and growth, cells expressing a retrovirally transduced PKC-gamma gene propagated in culture independent of the need for Ag stimulation, although maintaining identical functional specificity to the parental CTL. Constitutive PKC-gamma expression may therefore mimic physiologic PKC activation, thereby abrogating the requirement for TCR-Ag interaction in T cell activation.  相似文献   

17.
Regulatory T cells (Tregs) suppress immune responses against both self and non-self antigens. Tregs require activation through the T cell receptor (TCR) and IL-2 to exert their suppressive functions. However, how strength of TCR signals modulate the potency of Treg-mediated suppression of antigen-specific T cell activation remain unclear. We found that both strength of TCR signals and ratios of Tregs to target cells, either through superantigen, allogeneic antigens or HIV-specific peptides, modified the suppressive ability of Tregs. While human Tregs were able to mediate suppression in the presence of only autologous antigen-presenting cells, this was much less efficient as compared to when Tregs were activated by allogeneic dendritic cells. In another physiologically relevant system, we show that the strength of peptide stimulation, high frequency of responder CD8+ T cells or presence of high IL-2 can override the suppression of HIV-specific CD8+ T cells by Tregs. These findings suggest that ratios and TCR activation of human Tregs, are important parameters to overcome robust immune responses to pathogens or allogeneic antigens. Modulating the strength of T cell signals and selective enhancement or depletion of antigen-specific Tregs thus may have implications for designing potent vaccines and regulating immune responses during allogeneic transplantation and chronic infections.  相似文献   

18.
Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject’s forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation.  相似文献   

19.
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.  相似文献   

20.
The authors measured the noise and impedance from face-to-face Ag-AgCl electrode pairs, as well as the noise from Ag-AgCl electrodes placed on the human body surface, in the frequency band from 0.5 Hz to 500 Hz, which corresponds to high-resolution ECG measurements. Electrode noise and electrode impedance were measured simultaneously to compare electrode noise with the thermal noise from the real part of electrode impedance. The results show that electrode noise depends on electrode area, electrolytic gel, the patient, and the placement site. In the frequency band from 0.5 Hz to 500 Hz, root-mean-square electrode noise is typically less than 1 microV for electrodes placed face-to-face and ranges from 1 microV to 15 microV for electrodes on the body surface. The noise spectral density increases at low frequencies as 1/fa and it is always higher than the thermal noise from the real part of the electrode impedance. There is a high correlation between electrode dc offset voltage and electrode noise. Thus, offset voltage measurements allow identification of noise from low-noise electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号