首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z Ge  D E Taylor 《Journal of bacteriology》1997,179(16):4970-4976
The Helicobacter pylori pss gene, coding for phosphatidylserine synthase (PSS), was cloned and sequenced in this study. A polypeptide of 237 amino acids was deduced from the PSS sequence. H. pylori PSS exhibits significant amino acid sequence identity with the PSS proteins found in the archaebacterium Methanococcus jannaschii, the gram-positive bacterium Bacillus subtilis, and the yeast Saccharomyces cerevisiae but none with its Escherichia coli counterpart. Expression of the putative pss gene in maxicells gave rise to a product of approximately 26 kDa, which is in agreement with the predicted molecular mass of 26,617 Da. A manganese-dependent PSS activity was found in the membrane fractions of the E. coli cells overexpressing the H. pylori pss gene product. This result indicates that this enzyme is a membrane-bound protein, a conclusion which is supported by the fact that the PSS protein contains several local hydrophobic segments which could form transmembrane helices. The pss gene was inactivated with a chloramphenicol acetyltransferase cassette on the plasmid. However, an isogenic pss gene-disrupted mutant of H. pylori UA802 could not be obtained, suggesting that this enzyme plays an essential role in the growth of this organism.  相似文献   

2.
The trkG gene encodes a component of the K+ uptake system Trk and is located at 30.5 min inside the lambdoid prophage region rac of the Escherichia coli chromosome. trkG was subcloned, its nucleotide sequence was determined, and its product was identified in a minicell system. The open reading frame of 1,455 bp encodes a hydrophobic membrane protein with a calculated molecular weight of 53,493 that is predicted to contain up to 12 transmembrane helices. The trkG gene product behaved as a hydrophobic membrane protein; it was found exclusively in the membrane fraction of the minicells and its migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was anomalous, indicating an apparent molecular weight of 35,000. The trkG gene contains an exceptionally high proportion of infrequently used codons, raising the question of the origin of this gene. trkG does not appear to be a prophage gene since no similarity was observed between the nucleotide sequence of trkG or the amino acid sequence of its product and the sequences of genes or proteins from bacteriophage lambda.  相似文献   

3.
4.
Two species of folate binding protein (FBP), an integral membrane-associated form and a soluble secreted form, have been previously purified from cultured human KB cells. The complete nucleotide sequence of the complementary DNA (cDNA) clone for the coding region of the mature membrane-associated FBP has now been determined, and the deduced amino acid sequence has been computer-analyzed for a prediction of the secondary structure of the protein. The clone has 857 nucleotides of which 678 comprise the coding region for 226 amino acids. The deduced amino sequence contains the identical sequence of the published 18 NH2-terminal amino acids of the purified FBP from KB cells and the published partial amino acid sequence of the human milk FBP except for 1 residue. There was also over 90% homology with the published amino acid sequence of the bovine milk FBP. A total of 16 cysteine residues has been conserved in the three proteins indicating that this amino acid may provide a tertiary structure which is required for its ligand binding function. Northern blot analysis using the cDNA probe identified a single band of 1.28-kilobase pair mRNA in KB cells which was 4.7-fold more intense in folate-depleted cells than in normal cells. These results indicate that the membrane FBP and the soluble FBP in the medium are translation products of the same gene. Computer analysis of the deduced amino acid sequence indicates that there is only one stretch of amino acids of sufficient hydrophobicity and length to span the lipid bilayer of the plasma membrane, but it lacked a predictable helical structure. Those regions of the sequence which did have a predictable helical structure lacked sufficient hydrophobicity required for a membrane anchor. Thus, it is likely that the fatty acids previously reported to be present in the membrane-associated FBP from these cells rather than a peptide sequence provide an important membrane anchoring function.  相似文献   

5.
The gene xylE, coding for xylose-proton symport in Escherichia coli, was cloned and its DNA sequence determined. The cloning strategy utilized lambda placMu insertions and exploited the proximity of xylE to malB. A 2.8-kilobase HincII fragment of cloned DNA restored [14C]xylose transport and xylose-proton symport activities to a xylose transport-negative strain. The xylE gene was identified as a 1473-base pair open reading frame, located 373 base pairs downstream of malG, encoding a hydrophobic protein of Mr 53,607. The amino acid sequence of XylE bore little resemblance to the lactose-proton LacY symporter or melibiose-sodium MelB symporter, but a high degree of homology was found with the arabinose-proton AraE symporter of E. coli and glucose transport proteins of mammals. Structural analyses and comparisons suggest that 12 membrane-spanning segments may occur in the XylE protein.  相似文献   

6.
E Dassa  M Hofnung 《The EMBO journal》1985,4(9):2287-2293
The MalG protein is needed for the transport of maltose in Escherichia coli K12. We present the sequence of gene malG. The deduced amino acid sequence corresponds to a protein of 296 amino acid residues (mol. wt. = 32 188 daltons). This protein is largely hydrophobic (hydrophobic index = 0.83) and is thus presumably an integral inner membrane protein which could span the membrane through six hydrophobic segments. We provide direct evidence from fusion proteins for the translation frame and we also identified the in vitro made MalG protein. We have found a sequence which is highly conserved between MalG and MalF, the other integral inner membrane protein of the maltose transport system. This conserved sequence is also present in all known integral membrane proteins of binding protein-dependent transport systems, always at the same distance (approximately 90 residues) from their COOH terminus. We discuss briefly this finding.  相似文献   

7.
8.
A cryptic citrate transport gene (citA) from Salmonella typhimurium chromosome was cloned and its nucleotide sequence was determined. The cloned plasmid conferred citrate-utilizing ability on wild-type Escherichia coli, which cannot grow on citrate as the sole source of carbon. The resultant E. coli transformant was able to transport citrate. A 1,302-base-pair open reading frame with a preceding ribosomal binding site was found in the cloned DNA fragment. The 434-amino-acid protein that could be translated from this open reading frame is highly hydrophobic (69% nonpolar amino acid residues), consistent with the fact that the transport protein is an intrinsic membrane protein. The molecular weight of this protein was calculated to be 47,188. The gene sequence determined is highly homologous to those of Cit+ plasmid-mediated citrate transport gene, citA, from E. coli, the chromosomal citA gene from Citrobacter amalonaticus and the chromosomal cit+ gene from Klebsiella pneumoniae. The hydropathy profile of the deduced amino acid sequence suggests that this carrier has 12 hydrophobic segments, which may span the membrane lipid bilayer.  相似文献   

9.
The complete nucleotide sequence (321 bp) of smr (staphylococcal multidrug resistance), a gene coding for efflux-mediated multidrug resistance of Staphylococcus aureus, was determined by using two different plasmids as DNA templates. The smr gene product (identical to products of ebr and qacC/D genes) was shown to be homologous to a new family of small membrane proteins found in Escherichia coli, Pseudomonas aeruginosa, Agrobacterium tumefaciens, and Proteus vulgaris. The smr gene was subcloned and expressed in S. aureus and E. coli and its ability to confer the multidrug resistant phenotype was demonstrated for two different lipophilic cation classes: phosphonium derivatives and quarternary amines. Expression of smr gene leads to the efflux of tetraphenylphosphonium and to a net decrease in the uptake of lipophilic cations. The deduced polypeptide sequence (107 amino acid residues, 11,665 kDa) has 46% hydrophobic residues (Phe, Ile, Leu, and Val) and 20% hydroxylic residues (Ser and Thr). Four transmembrane segments are predicted for smr gene product. Of the charged amino acid residues, only Glu 13 is located in a transmembrane segment. This Glu 13 is conserved in all members of the family of small membrane proteins. We propose a mechanism whereby exchange of protons at the Glu 13 is a key in the efflux of the lipophilic cation. This mechanism includes the idea that protons are transported to the Glu 13 via an appropriate chain of hydroxylic residues in the transmembrane segments of Smr.  相似文献   

10.
11.
The osmoregulated ompC gene of Escherichia coli was cloned and the DNA sequence of a fragment encompassing the promoter region and a portion of the coding region was determined. There were no obvious homologies in the DNA sequence of the promoter regions of the ompC and ompF genes, in contrast to those of the coding regions of the two genes, both of which code for the matrix porins (major outer membrane proteins) and form passive diffusion pores. The amino acid sequence of the signal peptide of pro-OmpC protein was also deduced from the DNA sequence  相似文献   

12.
The nucleotide sequence of the genes encoding the high affinity, branched-chain amino acid transport systems LIV-I and LS has been determined. Seven genes are present on a 7568-base pair DNA fragment, six of which participate directly in branched-chain amino acid transport. Two periplasmic amino acid-binding proteins are encoded by the livJ (LIV-BP) and livK (LS-BP) genes. These two proteins confer specificity on the LIV-I and LS transport systems. livK is the first gene in a polycistronic message that includes four genes encoding membrane components, livHMGF. The protein products of the livHMGF genes are shared by the two systems. An analysis of the livH and livM DNA sequences suggests that they encode hydrophobic proteins capable of spanning the membrane several times. The LivG and LivF proteins are less hydrophobic, but are also tightly associated with the membrane. Both LivG and LivF contain the consensus sequence for adenine nucleotide binding observed in many other transport proteins. A deletion strain that does not express any of the liv genes was constructed. This strain was used to show that each of the membrane component genes is required for high affinity leucine transport, including two genes, livM and livF, for which no previous genetic evidence had been obtained.  相似文献   

13.
14.
Recombinant clones expressing antigenic determinants of the 18-kDa protein antigen from Mycobacterium leprae recognized by the L5 monoclonal antibody were isolated from a lambda gt11 expression library and their nucleotide sequences determined. All clones expressed the M. leprae-specific determinant as part of a large fusion protein with Escherichia coli beta-galactosidase. The deduced amino acid sequence of the coding region indicated that all the lambda gt11 recombinant clones contained an incomplete M. leprae gene sequence representing the carboxy-terminal two-thirds (111 amino acids) of the 18-kDa gene and coding for a peptide of m.w. 12,432. Subsequent isolation and sequencing of a 3.2kb BamHI-PstI DNA fragment from a genomic M. leprae cosmid library permitted the deduction of the complete 148 amino acid sequence with a predicted m.w. of 16,607. A second open reading frame 560 bases downstream from the 18-kDa coding sequence was found to code for a putative protein of 137 amino acids (m.w. = 15,196). Neither this nor the 18-kDa amino acid sequence displayed any significant homologies with any proteins in the GENBANK, EMBL, or NBRF data bases. Crude lysates from recombinant lambda gt11 clones expressing part of the 18-kDa protein have been reported to stimulate the proliferation of some M. leprae-specific helper T cell clones. Thus, it is significant that the complete 18-kDa sequence contains five short peptides predicted to be possible helper T cell antigenic epitopes based on their propensity to form amphipathic helices. Although three of these occur within the 111 amino acid carboxy-terminal peptide expressed by lambda gt11 clones, the most highly amphipathic peptide is found in the amino-terminal region not present in the lambda gt11 recombinants.  相似文献   

15.
Blue-green algae (cyanobacteria) contain both primitive photosynthetic and respiratory systems in their membranes. The controversial genes coding for an alpha alpha 3-type cytochrome oxidase in cyanobacteria were examined. The DNA probe coding for the most conserved part of subunit I hybridized with DNA fragments from four cyanobacterial species. We have cloned the genes coding for subunits I and II from the genomic library of the thermophilic cyanobacterium Synechococcus vulcanus and determined the nucleotide sequence of the subunit II gene. The deduced protein sequence (327 amino acid residues) indicates that there are two hydrophobic segments near the N-terminus and a hydrophilic intermembrane domain containing ligands for CuA (the ESR-active Copper) similar to other subunit IIs. The S. vulcanus subunit II does not contain the cytochrome c moiety that is present in bacilli and thermophiles.  相似文献   

16.
We have determined the nucleotide sequence of the pbpA gene encoding penicillin-binding protein (PBP) 2 of Escherichia coli. The coding region for PBP 2 was 1899 base pairs in length and was preceded by a possible promoter sequence and two open reading frames. The primary structure of PBP 2, deduced from the nucleotide sequence, comprised 633 amino acid residues. The relative molecular mass was calculated to be 70867. The deduced sequence agreed with the NH2-terminal sequence of PBP 2 purified from membranes, suggesting that PBP 2 has no signal peptide. The hydropathy profile suggested that the NH2-terminal hydrophobic region (a stretch of 25 non-ionic amino acids) may anchor PBP 2 in the cytoplasmic membrane as an ectoprotein. There were nine homologous segments in the amino acid sequence of PBP 2 when compared with PBP 3 of E. coli. The active-site serine residue of PBP 2 was predicted to be Ser-330. Around this putative active-site serine residue was found the conserved sequence of Ser-Xaa-Xaa-Lys, which has been identified in all of the other E. coli PBPs so far studied (PBPs 1A, 1B, 3, 5 and 6) and class A and class C beta-lactamases. In the higher-molecular-mass PBPs 1A, 1B, 2 and 3, Ser-Xaa-Xaa-Lys-Pro was conserved. In the putative peptidoglycan transpeptidase domain there were six amino acid residues, which are common only in the PBPs of higher molecular mass.  相似文献   

17.
18.
The nucleotide sequence of a 2220-base-pair fragment containing the btuB gene of Escherichia coli was determined. There was a single open reading frame which was translated into a 614-amino-acid polypeptide, the first 20 amino acids of which comprised a typical leader sequence. The putative mature or processed form had a molecular weight (66,400) and a composition in close agreement with that determined for the purified receptor. The distribution of amino acids in the receptor protein was similar to that of other outer membrane proteins, showing a fairly even distribution of charged residues and the absence of extensive hydrophobic stretches. The btuB451 mutation appears to alter the receptor to eliminate its ability to function in vitamin B12 uptake without affecting its ligand binding properties. The sequence of the DNA from this mutant was determined and revealed a leucine-to-proline (C-to-T transition) change in the eighth amino acid of the mature form.  相似文献   

19.
The nucleotide sequence of the melB gene coding for the melibiose carrier in Escherichia coli has been determined. The melibiose carrier is predicted to consist of 469 amino acid residues, resulting in a protein with a molecular weight of 52,029. The predicted carrier protein is highly hydrophobic (70% nonpolar amino acid residues). The hydropathic profile suggests that there are 10 long hydrophobic segments in the primary structure of the carrier protein. Most of them seem to traverse the membrane. Although the hydropathic profile of the melibiose carrier is similar to that of the lactose carrier as a whole, homology in the primary structure between the two carriers is very low. Furthermore, no homology in the nucleotide sequence is found in the structural genes for the two carriers. However, the nucleotide sequences of the intergenic regions are very similar between the melibiose operon and the lactose operon. There is a typical intercistronic regulatory sequence in the 3'-flanking region of the melB as well as in that of the lacY, which suggests the presence of another gene downstream of the melB.  相似文献   

20.
The beta antigen of the lbc protein complex of Group B streptococci is a cell-surface receptor which binds the Fc region of human immunoglobulin A (IgA). Determination of the nucleotide sequence of the beta antigen gene shows that it encodes a preprotein having a molecular weight of 130,963 daltons and a polypeptide of 1164 amino acid residues that is typical of other Gram-positive cell-wall proteins. There is a long signal sequence of 37 amino acids at the N-terminus. Four of the five C-terminal amino acid residues are basic and are preceded by a hydrophobic stretch that appears to anchor the C-terminus in the cell membrane. To the N-terminal side of this hydrophobic stretch is a putative cell-wall-spanning region containing proline-rich repeated sequences. An unusual feature of these repeated sequences is a three-residue periodicity, whereby every first residue is a proline, the second residue is alternating positively or negatively charged, and the third residue is uncharged. The IgA-binding activity was approximately localized by expressing subfragments of the beta antigen as fusion proteins. Two distinct but adjacent DNA segments specified peptides that bound IgA, which indicates that the IgA-binding activity is located in two distinct regions of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号